scispace - formally typeset
Search or ask a question
Institution

Cochin University of Science and Technology

EducationKochi, Kerala, India
About: Cochin University of Science and Technology is a education organization based out in Kochi, Kerala, India. It is known for research contribution in the topics: Thin film & Natural rubber. The organization has 5382 authors who have published 7690 publications receiving 103827 citations. The organization is also known as: CUSAT & Cochin University.


Papers
More filters
Journal ArticleDOI
TL;DR: The magnetic susceptibility measurements indicate that all the complexes are paramagnetic and the structure of the compound 8 was found to be distorted square pyramid around copper(II) ion.

51 citations

Journal ArticleDOI
TL;DR: Saccharum plant in combination with Candida VITJzN04 is an effective alternative for the conventional remediation strategies and results suggested that the synergistic activity of plant and yeast resulted in fast and efficient degradation of lindane.

51 citations

Journal ArticleDOI
TL;DR: Investigations in the laboratory have shown that kaolinite can be easily removed from aqueous suspensions by flocculation and settling using chitosan, provided the suspension medium contains traces of dissolved humic substances.

51 citations

Journal ArticleDOI
TL;DR: In this paper, a good correlation was obtained between the dehydration activities of the simple ferrites and their weak plus medium strength acidities (usually of the Brnsted type) determined independently by the n-butylamine adsorption and ammonia-TPD methods.
Abstract: Preparation of simple and mixed ferrospinels of nickel, cobalt and copper and their sulphated analogues by the room temperature coprecipitation method yielded fine particles with high surface areas. Study of the vapour phase decomposition of cyclohexanol at 300 ◦ C over all the ferrospinel systems showed very good conversions yielding cyclohexene by dehydration and/or cyclohexanone by dehydrogenation, as the major products. Sulphation very much enhanced the dehydration activity over all the samples. A good correlation was obtained between the dehydration activities of the simple ferrites and their weak plus medium strength acidities (usually of the Brnsted type) determined independently by the n-butylamine adsorption and ammonia-TPD methods. Mixed ferrites containing copper showed a general decrease in acidities and a drastic decrease in dehydration activities. There was no general correlation between the basicity parameters obtained by electron donor studies and the ratio of dehydrogenation to dehydration activities. There was a leap in the dehydrogenation activities in the case of all the ferrospinel samples containing copper. Along with the basic properties, the redox properties of copper ion have been invoked to account for this added activity. © 2002 Elsevier Science B.V. All rights reserved.

51 citations

Journal ArticleDOI
TL;DR: This review article introduces the very recent progress and novel paradigms on the aspects of both borophene derivatives and boron fullerene-based systems reported for hydrogen storage, focused on the synthesis, physiochemical properties, hydrogen storage mechanism and practical applications.
Abstract: Two-dimensional materials have led to a leap forward in materials science research, especially in the fields of energy conversion and storage. Borophene and its spherical counterpart boron fullerene represent emerging materials that have attracted much attention in the whole area of advanced energy materials and technologies. Owing to their prominent features, such as electronic environment and geometry, borophene and boron fullerene have been used in versatile applications, such as supercapacitors, superconductors, anode materials for photochemical water splitting, and biosensors. Herein, one of the most promising applications/areas of hydrogen storage is discussed. Boron fullerenes have been considered and discussed for hydrogen-storage applications, and recently borophene was also included in the list of materials with promising hydrogen-storage properties. Studies focus mainly on doped borophene systems over pristine borophene due to enhanced features available upon decoration with metal atoms. This Review introduces very recent progress and novel paradigms with respect to both borophene derivatives and boron fullerene based systems reported for hydrogen storage, with a focus on the synthesis, physiochemical properties, hydrogen-storage mechanism, and practical applications.

51 citations


Authors

Showing all 5433 results

NameH-indexPapersCitations
Pulickel M. Ajayan1761223136241
Maxime Dougados134105469979
Sabu Thomas102155451366
Philippe Ravaud10161841409
David P. Salmon9941943935
Jérôme Bertherat8543824794
Luc Mouthon8456426238
Xavier Bertagna7428518738
Alfred Mahr7322922581
Nicolas Roche7262922845
Charles Chapron7137818048
Benoit Terris6123413353
François Goffinet6053214433
Xavier Puéchal6031613240
Pascal Laugier5848210518
Network Information
Related Institutions (5)
Indian Institute of Technology Kharagpur
38.6K papers, 714.5K citations

90% related

Indian Institutes of Technology
40.1K papers, 652.9K citations

90% related

Banaras Hindu University
23.9K papers, 464.6K citations

89% related

University of Delhi
36.4K papers, 666.9K citations

89% related

Panjab University, Chandigarh
18.7K papers, 461K citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202318
2022106
2021753
2020613
2019503
2018439