scispace - formally typeset
Search or ask a question
Institution

Cochrane Collaboration

NonprofitOxford, United Kingdom
About: Cochrane Collaboration is a nonprofit organization based out in Oxford, United Kingdom. It is known for research contribution in the topics: Systematic review & Randomized controlled trial. The organization has 1995 authors who have published 3928 publications receiving 382695 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Three main actions are warranted: academic institutions and funders should reward investigators who fully disseminate their research protocols, reports, and participant-level datasets, and standards for the content of protocols and full study reports should be rigorously developed and adopted for all types of health research.

668 citations

Journal ArticleDOI
TL;DR: The highest quality cluster-RCTs suggest respiratory virus spread can be prevented by hygienic measures, such as handwashing, especially around younger children, as well asSimple and low-cost interventions would be useful for reducing transmission of epidemic respiratory viruses.
Abstract: Background Viral epidemics or pandemics of acute respiratory infections like influenza or severe acute respiratory syndrome pose a global threat. Antiviral drugs and vaccinations may be insufficient to prevent their spread. Objectives To review the effectiveness of physical interventions to interrupt or reduce the spread of respiratory viruses. Search methods We searched The Cochrane Library, the Cochrane Central Register of Controlled Trials (CENTRAL 2010, Issue 3), which includes the Acute Respiratory Infections Group's Specialised Register, MEDLINE (1966 to October 2010), OLDMEDLINE (1950 to 1965), EMBASE (1990 to October 2010), CINAHL (1982 to October 2010), LILACS (2008 to October 2010), Indian MEDLARS (2008 to October 2010) and IMSEAR (2008 to October 2010). Selection criteria In this update, two review authors independently applied the inclusion criteria to all identified and retrieved articles and extracted data. We scanned 3775 titles, excluded 3560 and retrieved full papers of 215 studies, to include 66 papers of 67 studies. We included physical interventions (screening at entry ports, isolation, quarantine, social distancing, barriers, personal protection, hand hygiene) to prevent respiratory virus transmission. We included randomised controlled trials (RCTs), cohorts, case-controls, before-after and time series studies. Data collection and analysis We used a standardised form to assess trial eligibility. We assessed RCTs by randomisation method, allocation generation, concealment, blinding and follow up. We assessed non-RCTs for potential confounders and classified them as low, medium and high risk of bias. Main results We included 67 studies including randomised controlled trials and observational studies with a mixed risk of bias. A total number of participants is not included as the total would be made up of a heterogenous set of observations (participant people, observations on participants and countries (object of some studies)). The risk of bias for five RCTs and most cluster-RCTs was high. Observational studies were of mixed quality. Only case-control data were sufficiently homogeneous to allow meta-analysis. The highest quality cluster-RCTs suggest respiratory virus spread can be prevented by hygienic measures, such as handwashing, especially around younger children. Benefit from reduced transmission from children to household members is broadly supported also in other study designs where the potential for confounding is greater. Nine case-control studies suggested implementing transmission barriers, isolation and hygienic measures are effective at containing respiratory virus epidemics. Surgical masks or N95 respirators were the most consistent and comprehensive supportive measures. N95 respirators were non-inferior to simple surgical masks but more expensive, uncomfortable and irritating to skin. Adding virucidals or antiseptics to normal handwashing to decrease respiratory disease transmission remains uncertain. Global measures, such as screening at entry ports, led to a non-significant marginal delay in spread. There was limited evidence that social distancing was effective, especially if related to the risk of exposure. Authors' conclusions Simple and low-cost interventions would be useful for reducing transmission of epidemic respiratory viruses. Routine long-term implementation of some measures assessed might be difficult without the threat of an epidemic.

633 citations

Journal ArticleDOI
TL;DR: The objective of this study is to assess and quantify the risk for gestational diabetes mellitus (GDM) according to prepregnancy maternal body mass index (BMI) and find out if this information is important when counselling women planning a pregnancy.
Abstract: The objective of this study is to assess and quantify the risk for gestational diabetes mellitus (GDM) according to prepregnancy maternal body mass index (BMI). The design is a systematic review of observational studies published in the last 30 years. Four electronic databases were searched for publications (1977-2007). BMI was elected as the only measure of obesity, and all diagnostic criteria for GDM were accepted. Studies with selective screening for GDM were excluded. There were no language restrictions. The methodological quality of primary studies was assessed. Some 1745 citations were screened, and 70 studies (two unpublished) involving 671 945 women were included (59 cohorts and 11 case-controls). Most studies were of high or medium quality. Compared with women with a normal BMI, the unadjusted pooled odds ratio (OR) of an underweight woman developing GDM was 0.75 (95% confidence interval [CI] 0.69 to 0.82). The OR for overweight, moderately obese and morbidly obese women were 1.97 (95% CI 1.77 to 2.19), 3.01 (95% CI 2.34 to 3.87) and 5.55 (95% CI 4.27 to 7.21) respectively. For every 1 kg m(-2) increase in BMI, the prevalence of GDM increased by 0.92% (95% CI 0.73 to 1.10). The risk of GDM is positively associated with prepregnancy BMI. This information is important when counselling women planning a pregnancy.

621 citations

Journal ArticleDOI
30 Jul 2020-BMJ
TL;DR: Glucocorticoids probably reduce mortality and mechanical ventilation in patients with covid-19 compared with standard care and the effectiveness of most interventions is uncertain because most of the randomised controlled trials so far have been small and have important study limitations.
Abstract: Objective To compare the effects of treatments for coronavirus disease 2019 (covid-19). Design Living systematic review and network meta-analysis. Data sources WHO covid-19 database, a comprehensive multilingual source of global covid-19 literature, up to 1 March 2021 and six additional Chinese databases up to 20 February 2021. Studies identified as of 12 February 2021 were included in the analysis. Study selection Randomised clinical trials in which people with suspected, probable, or confirmed covid-19 were randomised to drug treatment or to standard care or placebo. Pairs of reviewers independently screened potentially eligible articles. Methods After duplicate data abstraction, a bayesian network meta-analysis was conducted. Risk of bias of the included studies was assessed using a modification of the Cochrane risk of bias 2.0 tool, and the certainty of the evidence using the grading of recommendations assessment, development, and evaluation (GRADE) approach. For each outcome, interventions were classified in groups from the most to the least beneficial or harmful following GRADE guidance. Results 196 trials enrolling 76 767 patients were included; 111 (56.6%) trials and 35 098 (45.72%) patients are new from the previous iteration; 113 (57.7%) trials evaluating treatments with at least 100 patients or 20 events met the threshold for inclusion in the analyses. Compared with standard care, corticosteroids probably reduce death (risk difference 20 fewer per 1000 patients, 95% credible interval 36 fewer to 3 fewer, moderate certainty), mechanical ventilation (25 fewer per 1000, 44 fewer to 1 fewer, moderate certainty), and increase the number of days free from mechanical ventilation (2.6 more, 0.3 more to 5.0 more, moderate certainty). Interleukin-6 inhibitors probably reduce mechanical ventilation (30 fewer per 1000, 46 fewer to 10 fewer, moderate certainty) and may reduce length of hospital stay (4.3 days fewer, 8.1 fewer to 0.5 fewer, low certainty), but whether or not they reduce mortality is uncertain (15 fewer per 1000, 30 fewer to 6 more, low certainty). Janus kinase inhibitors may reduce mortality (50 fewer per 1000, 84 fewer to no difference, low certainty), mechanical ventilation (46 fewer per 1000, 74 fewer to 5 fewer, low certainty), and duration of mechanical ventilation (3.8 days fewer, 7.5 fewer to 0.1 fewer, moderate certainty). The impact of remdesivir on mortality and most other outcomes is uncertain. The effects of ivermectin were rated as very low certainty for all critical outcomes, including mortality. In patients with non-severe disease, colchicine may reduce mortality (78 fewer per 1000, 110 fewer to 9 fewer, low certainty) and mechanical ventilation (57 fewer per 1000, 90 fewer to 3 more, low certainty). Azithromycin, hydroxychloroquine, lopinavir-ritonavir, and interferon-beta do not appear to reduce risk of death or have an effect on any other patient-important outcome. The certainty in effects for all other interventions was low or very low. Conclusion Corticosteroids and interleukin-6 inhibitors probably confer important benefits in patients with severe covid-19. Janus kinase inhibitors appear to have promising benefits, but certainty is low. Azithromycin, hydroxychloroquine, lopinavir-ritonavir, and interferon-beta do not appear to have any important benefits. Whether or not remdesivir, ivermectin, and other drugs confer any patient-important benefit remains uncertain. Systematic review registration This review was not registered. The protocol is publicly available in the supplementary material. Readers’ note This article is a living systematic review that will be updated to reflect emerging evidence. Updates may occur for up to two years from the date of original publication. This is the fourth version of the original article published on 30 July 2020 (BMJ 2020;370:m2980), and previous versions can be found as data supplements. When citing this paper please consider adding the version number and date of access for clarity.

602 citations

Journal ArticleDOI
TL;DR: Wir hoffen, dass das STROBE-Statement dazu beitragen kann, dassing Beobachtungsstudien besser berichtet werden, as well as empirische Evidenz and methodologische Aspekte berucksichtigt.
Abstract: Ein Grosteil der biomedizinischen Forschung ist beobachtend, und die Qualitat der veroffentlichten Berichte uber diese Forschung ist oft unzureichend. Dies behindert die Beurteilung der Starken und Schwachen einer Studie und ihrer Ubertragbarkeit. Die Strengthening the Reporting of Observational Studies in Epidemiology (STROBE-) Initiative hat Empfehlungen entwickelt, was in einem akkuraten und vollstandigen Bericht einer Beobachtungsstudie enthalten sein sollte. Die Empfehlungen wurden von uns so definiert, dass sie 3 Hauptstudientypen abdecken: Kohorten-, Fallkontroll- und Querschnittsstudien. Im September 2004 veranstalteten wir einen zweitagigen Workshop mit Methodikern, Forschern und Herausgebern wissenschaftlicher Zeitschriften, um eine Checkliste zu entwerfen. Anschliesend wurde der Entwurf bei mehreren Treffen der Koordinierungsgruppe und nach E-Mail-Diskussionen mit der erweiterten STROBE-Gruppe revidiert und dabei empirische Evidenz und methodologische Aspekte berucksichtigt. Das Ergebnis des Workshops und des anschliesenden iterativen Prozesses aus Beratung und Revision war eine Checkliste von 22 Punkten (STROBE-Statement), die sich auf die Bereiche Titel, Abstract, Einleitung, Methoden, Ergebnisse und Diskussion eines Artikels beziehen. 18 der Punkte sind relevant fur alle 3 Studiendesigns, wahrend 4 der Punkte spezifisch fur Kohorten-, Fallkontroll- und Querschnittsstudien sind. Ein ausfuhrlicher Begleitartikel („Explanation and Elaboration“) wurde separat veroffentlicht und ist auf den Webseiten von „PLoS Medicine“, „Annals of Internal Medicine“ und „Epidemiology“ frei zuganglich. Wir hoffen, dass das STROBE-Statement dazu beitragen kann, dass Beobachtungsstudien besser berichtet werden.

587 citations


Authors

Showing all 2000 results

NameH-indexPapersCitations
Douglas G. Altman2531001680344
John P. A. Ioannidis1851311193612
Jasvinder A. Singh1762382223370
George A. Wells149941114256
Shah Ebrahim14673396807
Holger J. Schünemann141810113169
Paul G. Shekelle132601101639
Peter Tugwell129948125480
Jeremy M. Grimshaw123691115126
Peter Jüni12159399254
John J. McGrath120791124804
Arne Astrup11486668877
Mike Clarke1131037164328
Rachelle Buchbinder11261394973
Ian Roberts11271451933
Network Information
Related Institutions (5)
Copenhagen University Hospital
21.5K papers, 789.8K citations

88% related

VU University Medical Center
22.9K papers, 1.1M citations

88% related

University Medical Center Groningen
30.3K papers, 967K citations

88% related

World Health Organization
22.2K papers, 1.3M citations

87% related

Radboud University Nijmegen Medical Centre
12.6K papers, 659.2K citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
202210
2021289
2020288
2019215
2018213