scispace - formally typeset
Search or ask a question
Institution

Cochrane Collaboration

NonprofitOxford, United Kingdom
About: Cochrane Collaboration is a nonprofit organization based out in Oxford, United Kingdom. It is known for research contribution in the topics: Systematic review & Randomized controlled trial. The organization has 1995 authors who have published 3928 publications receiving 382695 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This study aims to determine the accuracy of transvaginal ultrasonography, sonohysterography and diagnostic hysteroscopy for the investigation of abnormal uterine bleeding in premenopausal women.
Abstract: Background. To determine the accuracy of transvaginal ultrasonography, sonohysterography and diagnostic hysteroscopy for the investigation of abnormal uterine bleeding in premenopausal women. Desig...

206 citations

Journal ArticleDOI
TL;DR: This update found similar results to the previous update and managed to identify specific therapeutic areas where the computerized advice on drug dosage was beneficial compared with routine care, including a wide range of drugs in inpatient and outpatient settings.
Abstract: Computerized advice on drug dosage to improve prescribing practice (Review) 1 Copyright © 2013 The Cochrane Collaboration. Published by JohnWiley & Sons, Ltd. Data collection and analysis Two review authors independently extracted data and assessed study quality.We grouped the results from the included studies by drug used and the effect aimed at for aminoglycoside antibiotics, amitriptyline, anaesthetics, insulin, anticoagulants, ovarian stimulation, anti-rejection drugs and theophylline. We combined the effect sizes to give an overall effect for each subgroup of studies, using a random-effects model. We further grouped studies by type of outcome when appropriate (i.e. no evidence of heterogeneity). Main results Forty-six comparisons (from 42 trials) were included (as compared with 26 comparisons in the last update) including a wide range of drugs in inpatient and outpatient settings. All were randomized controlled trials except two studies. Interventions usually targeted doctors, although some studies attempted to influence prescriptions by pharmacists and nurses. Drugs evaluated were anticoagulants, insulin, aminoglycoside antibiotics, theophylline, anti-rejection drugs, anaesthetic agents, antidepressants and gonadotropins. Although all studies used reliable outcome measures, their quality was generally low. This update found similar results to the previous update and managed to identify specific therapeutic areas where the computerized advice on drug dosage was beneficial compared with routine care: 1. it increased target peak serum concentrations (standardized mean difference (SMD) 0.79, 95% CI 0.46 to 1.13) and the proportion of people with plasma drug concentrations within the therapeutic range after two days (pooled risk ratio (RR) 4.44, 95% CI 1.94 to 10.13) for aminoglycoside antibiotics; 2. it led to a physiological parameter more often within the desired range for oral anticoagulants (SMD for percentage of time spent in target international normalized ratio +0.19, 95% CI 0.06 to 0.33) and insulin (SMD for percentage of time in target glucose range: +1.27, 95% CI 0.56 to 1.98); 3. it decreased the time to achieve stabilization for oral anticoagulants (SMD -0.56, 95% CI -1.07 to -0.04); 4. it decreased the thromboembolism events (rate ratio 0.68, 95% CI 0.49 to 0.94) and tended to decrease bleeding events for anticoagulants although the difference was not significant (rate ratio 0.81, 95%CI 0.60 to 1.08). It tended to decrease unwanted effects for aminoglycoside antibiotics (nephrotoxicity: RR 0.67, 95% CI 0.42 to 1.06) and anti-rejection drugs (cytomegalovirus infections: RR 0.90, 95% CI 0.58 to 1.40); 5. it tended to reduce the length of time spent in the hospital although the difference was not significant (SMD -0.15, 95% CI -0.33 to 0.02) and to achieve comparable or better cost-effectiveness ratios than usual care; 6. there was no evidence of differences in mortality or other clinical adverse events for insulin (hypoglycaemia), anaesthetic agents, antirejection drugs and antidepressants. For all outcomes, statistical heterogeneity quantified by I2 statistics was moderate to high. Authors’ conclusions This review update suggests that computerized advice for drug dosage has some benefits: it increases the serum concentrations for aminoglycoside antibiotics and improves the proportion of people for which the plasma drug is within the therapeutic range for aminoglycoside antibiotics. It leads to a physiological parameter more often within the desired range for oral anticoagulants and insulin. It decreases the time to achieve stabilization for oral anticoagulants. It tends to decrease unwanted effects for aminoglycoside antibiotics and anti-rejection drugs, and it significantly decreases thromboembolism events for anticoagulants. It tends to reduce the length of hospital stay compared with routine care while comparable or better cost-effectiveness ratios were achieved. However, there was no evidence that decision support had an effect on mortality or other clinical adverse events for insulin (hypoglycaemia), anaesthetic agents, anti-rejection drugs and antidepressants. In addition, there was no evidence to suggest that some decision support technical features (such as its integration into a computer physician order entry system) or aspects of organization of care (such as the setting) could optimize the effect of computerized advice. Taking into account the high risk of bias of, and high heterogeneity between, studies, these results must be interpreted with caution. P L A I N L A N G U A G E S U M M A R Y Computerized advice on drug dosage to improve prescribing practice (Review) 2 Copyright © 2013 The Cochrane Collaboration. Published by JohnWiley & Sons, Ltd. Computerized advice on drug dosage to improve prescribing practice Background Physicians and other healthcare professionals often prescribe drugs that will only work at certain concentrations. These drugs are said to have a narrow therapeutic window. This means that if the concentration of the drug is too high or too low, they may cause serious side effects or not provide the benefits they should. For example, blood thinners (anticoagulants) are prescribed to thin the blood to prevent clots. If the concentration is too high, people may experience excessive bleeding and even death. In contrast, if the concentration is too low, a clot could form and cause a stroke. For these types of drugs, it is important that the correct amount of the drug be prescribed. Calculating and prescribing the correct amount can be complicated and time-consuming for healthcare professionals. Sometimes determining the correct dose can take a long time since healthcare professionals may not want to prescribe high doses of the drugs initially because they make mistakes in calculations. Several computer systems have been designed to do these calculations and assist healthcare professionals in prescribing these types of drugs. Study characteristics We sought clinical trial evidence from scientific databases to evaluate the effectiveness of these computer systems. The evidence is current to January 2012. We found data from 42 trials (40 randomized controlled trials (trials that allocate people at random to receive one of a number of drugs or procedures) and two non-randomized controlled trials). Key results Computerized advice for drug dosage can benefit people taking certain drugs compared with empiric dosing (where a dose is chosen based on a doctor’s observations and experience)without computer assistance.When using the computer system, healthcare professionals prescribed appropriately higher doses of the drugs initially for aminoglycoside antibiotics and the correct drug dose was reached more quickly for oral anticoagulants. It significantly decreased thromboembolism (blood clotting) events for anticoagulants and tended to reduce unwanted effects for aminoglycoside antibiotics and anti-rejection drugs (although not an important difference). It tended to reduce the length of hospital stay compared with routine care with comparable or better cost-effectiveness. There was no evidence of effects on death or clinical side events for insulin (low blood sugar (hypoglycaemia)), anaesthetic agents, anti-rejection drugs (drugs taken to prevent rejection of a transplanted organ) and antidepressants. Quality of evidence The quality of the studies was low so these results must be interpreted with caution.

206 citations

Journal ArticleDOI
20 Apr 2011-PLOS ONE
TL;DR: A statistically significant effect of DC-mediated cellular immune response and of DC dose on CBR could be demonstrated and is a 'proof of principle' for the immunological development of Washington DC-based vaccines.
Abstract: Background More than 200 clinical trials have been performed using dendritic cells (DC) as cellular adjuvants in cancer. Yet the key question whether there is a link between immune and clinical response remains unanswered. Prostate and renal cell cancer (RCC) have been extensively studied for DC-based immunotherapeutic interventions and were therefore chosen to address the above question by means of a systematic review and meta-analysis.

206 citations

Book ChapterDOI
22 Aug 2014
TL;DR: The Consolidated Criteria for Reporting Qualitative Studies (COREQ) as mentioned in this paper is the only reporting guidance for qualitative research to have received other than isolated endorsement although it applies to only a few of the many qualitative methods in use.
Abstract: The Consolidated Criteria for Reporting Qualitative Studies (COREQ) covers the reporting of studies using interviews and focus groups It is the only reporting guidance for qualitative research to have received other than isolated endorsement although it applies to only a few of the many qualitative methods in use The COREQ checklist was developed to promote explicit and comprehensive reporting of interviews and focus groups The COREQ checklist consists of 32 criteria, with a descriptor to supplement each item This chapter discusses how best to use the guideline, development process, evidence of the effectiveness of guideline, endorsement and adherence, cautions and limitations, and key features of the COREQ It is important that researchers provide sufficient detail on their methods of data analysis and the relationship between the analysis and the findings in the research report so that reviewers can assess the rigor of the analysis and the credibility of the findings

204 citations

Journal ArticleDOI
TL;DR: The adapted diagram is a simple and pragmatic solution for showing the flow of studies in review updates, which includes an additional box with the number of previously included studies feeding into the total.
Abstract: Cochrane systematic reviews are conducted and reported according to rigorous standards. A study flow diagram must be included in a new review, and there is clear guidance from the PRISMA statement on how to do this. However, for a review update, there is currently no guidance on how study flow diagrams should be presented. To address this, a working group was formed to find a solution and produce guidance on how to use these diagrams in review updates.A number of different options were devised for how these flow diagrams could be used in review updates, and also in cases where multiple searches for a review or review update have been conducted. These options were circulated to the Cochrane information specialist community for consultation and feedback. Following the consultation period, the working group refined the guidance and made the recommendation that for review updates an adapted PRISMA flow diagram should be used, which includes an additional box with the number of previously included studies feeding into the total. Where multiple searches have been conducted, the results should be added together and treated as one set of results.There is no existing guidance for using study flow diagrams in review updates. Our adapted diagram is a simple and pragmatic solution for showing the flow of studies in review updates.

201 citations


Authors

Showing all 2000 results

NameH-indexPapersCitations
Douglas G. Altman2531001680344
John P. A. Ioannidis1851311193612
Jasvinder A. Singh1762382223370
George A. Wells149941114256
Shah Ebrahim14673396807
Holger J. Schünemann141810113169
Paul G. Shekelle132601101639
Peter Tugwell129948125480
Jeremy M. Grimshaw123691115126
Peter Jüni12159399254
John J. McGrath120791124804
Arne Astrup11486668877
Mike Clarke1131037164328
Rachelle Buchbinder11261394973
Ian Roberts11271451933
Network Information
Related Institutions (5)
Copenhagen University Hospital
21.5K papers, 789.8K citations

88% related

VU University Medical Center
22.9K papers, 1.1M citations

88% related

University Medical Center Groningen
30.3K papers, 967K citations

88% related

World Health Organization
22.2K papers, 1.3M citations

87% related

Radboud University Nijmegen Medical Centre
12.6K papers, 659.2K citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
202210
2021289
2020288
2019215
2018213