scispace - formally typeset
Search or ask a question
Institution

Cold Spring Harbor Laboratory

NonprofitCold Spring Harbor, New York, United States
About: Cold Spring Harbor Laboratory is a nonprofit organization based out in Cold Spring Harbor, New York, United States. It is known for research contribution in the topics: Gene & Genome. The organization has 3772 authors who have published 6603 publications receiving 1010873 citations. The organization is also known as: CSHL.
Topics: Gene, Genome, RNA, RNA splicing, Population


Papers
More filters
Proceedings ArticleDOI
01 Dec 2008
TL;DR: This paper validate the importance of various features currently used for designing an oligonucleotide probe, and a classification methodology is presented that can be used to predict the hybridization quality of a probe.
Abstract: Probe design is the most important step for any microarray based assay. Accurate and efficient probe design and selection for the target sequence is critical in generating reliable and useful results. Several different approaches for probe design are reported in literature and an increasing number of bioinformatics tools are available for the same. However, based on the reported low accuracy, determining the hybridization efficiency of the probes is still a big computational challenge. Present study deals with the extraction of various novel features related to sequence composition, thermodynamics and secondary structure that may be essential for designing good probes. A feature selection method has been used to assess the relative importance of all these features. In this paper, we validate the importance of various features currently used for designing an oligonucleotide probe. Finally, a classification methodology is presented that can be used to predict the hybridization quality of a probe.
Posted ContentDOI
02 Nov 2018-bioRxiv
TL;DR: A novel finding behind the broad and varied behavioral phenotypes commonly featured in female patients debilitated by X-linked mental disorders is provided and may offer new entry points for behavioral therapeutics.
Abstract: X-chromosome inactivation (XCI) in females is vital for normal brain function and cognition, as many X-linked genetic mutations lead to mental retardation and autism spectrum disorders, such as the fragile X syndrome (FXS). However, the degree by which XCI regulates disease presentation has been poorly investigated. To study this regulation in the mouse, here we quantified the brainwide composition of active-XC cells at single cell resolution using an X-linked MECP2-EGFP allele with known parent-of-origin. We present evidence that whole-brains, including all regions, on average favor maternal XC-active cells by 20%, or 8 million cells. This bias was conserved in heterozygous FXS mutant mice, which also corresponded to disease penetrance in maternal but not paternal FMR1 null mice. To localize the physical source of behavioral penetrance, brain-wide correlational screens successfully mapped mouse performance to cell densities in putative sensorimotor (e.g. sensory hindbrain, thalamus, globus pallidus) and sociability (e.g. visual/entorhinal cortices, bed nucleus stria terminalis, medial preoptic area) behavioral circuits of the open field sensorimotor and 3-chamber sociability assays, respectively. Overall, 50%/50% healthy/mutant cell density ratios in these brain networks were required for disease presentation in each behavior. These results suggest female X-linked behavioral penetrance of disease is regulated at the distributed level of mutant cell density in behavioral circuits, which is set by XCI that is subject to parent-of-origin effects. This work provides a novel explanation behind the broad and varied behavioral phenotypes commonly featured in female patients debilitated with X-linked mental disorders and may offer new entry points for behavioral therapeutics.
Reference EntryDOI
21 Aug 2001
TL;DR: In this article, the molecular mechanisms of cholesterol synthesis and the clinical consequences of their abnormalities were elucidated with the help of molecular mechanisms and their effects on the human body's metabolism.
Abstract: 1941– American scientist who, with Joseph Goldstein, elucidated the molecular mechanisms of cholesterol synthesis and the clinical consequences of their abnormalities.
Patent
11 Jun 1998
TL;DR: In this paper, a signal transduction pathway which promotes phagocytosis of apoptotic cells and in particular relates to a protein known as CED-6 in the nematode worm C. elegans, human equivalents of CED6 protein and nucleic acids encoding them.
Abstract: The invention relates to a signal transduction pathway which promotes phagocytosis of apoptotic cells and in particular relates to a protein known as CED-6 in the nematode worm C. elegans , human equivalents of CED-6 protein and nucleic acids encoding them. The invention also relates to use of the proteins and encoding nucleic acids in assay methods for detecting compounds which enhance or inhibit the signal transduction pathway and use of the proteins, nucleic acids and identified enhancer or inhibitor compounds in methods of treatment of human or animal disease.

Authors

Showing all 3800 results

NameH-indexPapersCitations
Phillip A. Sharp172614117126
Gregory J. Hannon165421140456
Ian A. Wilson15897198221
Marco A. Marra153620184684
Michael E. Greenberg148316114317
Tom Maniatis143318299495
Detlef Weigel14251684670
Kim Nasmyth14229459231
Arnold J. Levine139485116005
Joseph E. LeDoux13947891500
Gerald R. Fink13831670868
Ramnik J. Xavier138597101879
Harold E. Varmus13749676320
David A. Jackson136109568352
Scott W. Lowe13439689376
Network Information
Related Institutions (5)
Howard Hughes Medical Institute
34.6K papers, 5.2M citations

99% related

Salk Institute for Biological Studies
13.1K papers, 1.6M citations

98% related

European Bioinformatics Institute
10.5K papers, 999.6K citations

96% related

Laboratory of Molecular Biology
24.2K papers, 2.1M citations

96% related

Broad Institute
11.6K papers, 1.5M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202316
202239
2021292
2020350
2019315
2018288