scispace - formally typeset
Search or ask a question
Institution

Collège de France

EducationParis, France
About: Collège de France is a education organization based out in Paris, France. It is known for research contribution in the topics: Population & Dopamine. The organization has 6541 authors who have published 11983 publications receiving 648742 citations. The organization is also known as: College de France.


Papers
More filters
Journal ArticleDOI
20 Jun 2002-Nature
TL;DR: This work measures how long the drop remains in contact with the solid during the shock to help quantify the efficiency of water-repellent surfaces (super-hydrophobic solids) and to improve water-cooling of hot solids, which is limited by the rebounding of drops as well as by temperature effects.
Abstract: When a liquid drop lands on a solid surface without wetting it, it bounces with remarkable elasticity. Here we measure how long the drop remains in contact with the solid during the shock, a problem that was considered by Hertz for a bouncing ball. Our findings could help to quantify the efficiency of water-repellent surfaces (super-hydrophobic solids) and to improve water-cooling of hot solids, which is limited by the rebounding of drops as well as by temperature effects.

888 citations

Journal ArticleDOI
TL;DR: The unified mechanism shows that low-donor-number solvents are likely to lead to premature cell death, and that the future direction of research for lithium-oxygen batteries should focus on the search for new, stable, high-donour-number electrolytes, because they can support higher capacities and can better sustain discharge.
Abstract: The mechanism of O2 reduction in aprotic solvents is important for the operation of Li–O2 batteries but is not well understood. A single unified mechanism is now described that regards previous models as limiting cases. It shows that the solubility of the intermediate LiO2 is a critical factor that dictates the mechanism, emphasizing the importance of the solvent.

881 citations

Journal ArticleDOI
R. Abbott1, T. D. Abbott2, Sheelu Abraham3, Fausto Acernese4  +1332 moreInstitutions (150)
TL;DR: It is inferred that the primary black hole mass lies within the gap produced by (pulsational) pair-instability supernova processes, with only a 0.32% probability of being below 65 M⊙, which can be considered an intermediate mass black hole (IMBH).
Abstract: On May 21, 2019 at 03:02:29 UTC Advanced LIGO and Advanced Virgo observed a short duration gravitational-wave signal, GW190521, with a three-detector network signal-to-noise ratio of 14.7, and an estimated false-alarm rate of 1 in 4900 yr using a search sensitive to generic transients. If GW190521 is from a quasicircular binary inspiral, then the detected signal is consistent with the merger of two black holes with masses of 85_{-14}^{+21} M_{⊙} and 66_{-18}^{+17} M_{⊙} (90% credible intervals). We infer that the primary black hole mass lies within the gap produced by (pulsational) pair-instability supernova processes, with only a 0.32% probability of being below 65 M_{⊙}. We calculate the mass of the remnant to be 142_{-16}^{+28} M_{⊙}, which can be considered an intermediate mass black hole (IMBH). The luminosity distance of the source is 5.3_{-2.6}^{+2.4} Gpc, corresponding to a redshift of 0.82_{-0.34}^{+0.28}. The inferred rate of mergers similar to GW190521 is 0.13_{-0.11}^{+0.30} Gpc^{-3} yr^{-1}.

876 citations

Journal ArticleDOI
TL;DR: In this paper, the quantum Hall effect conductance was measured in ultracold atoms subject to artificial gauge fields, and the Chern number was found to be associated with topological phases.
Abstract: Chern numbers characterize the quantum Hall effect conductance—non-zero values are associated with topological phases. Previously only spotted in electronic systems, they have now been measured in ultracold atoms subject to artificial gauge fields.

874 citations

Journal ArticleDOI
TL;DR: Nanocellulose has excellent strength, high Young's modulus, biocompatibility, and tunable self-assembly, thixotropic, and photonic properties, which are essential for the applications of this material.
Abstract: With increasing environmental and ecological concerns due to the use of petroleum-based chemicals and products, the synthesis of fine chemicals and functional materials from natural resources is of great public value. Nanocellulose may prove to be one of the most promising green materials of modern times due to its intrinsic properties, renewability, and abundance. In this review, we present nanocellulose-based materials from sourcing, synthesis, and surface modification of nanocellulose, to materials formation and applications. Nanocellulose can be sourced from biomass, plants, or bacteria, relying on fairly simple, scalable, and efficient isolation techniques. Mechanical, chemical, and enzymatic treatments, or a combination of these, can be used to extract nanocellulose from natural sources. The properties of nanocellulose are dependent on the source, the isolation technique, and potential subsequent surface transformations. Nanocellulose surface modification techniques are typically used to introduce e...

864 citations


Authors

Showing all 6597 results

NameH-indexPapersCitations
Pierre Chambon211884161565
Irving L. Weissman2011141172504
David R. Williams1782034138789
Kari Alitalo174817114231
Pierre Bourdieu153592194586
Stanislas Dehaene14945686539
Howard L. Weiner144104791424
Alain Fischer14377081680
Yves Agid14166974441
Michel Foucault140499191296
Jean-Pierre Changeux13867276462
Jean-Marie Tarascon136853137673
K. Ganga13227299004
Jacques Delabrouille13135494923
G. Patanchon12824187233
Network Information
Related Institutions (5)
Centre national de la recherche scientifique
382.4K papers, 13.6M citations

92% related

University of Paris
174.1K papers, 5M citations

92% related

Max Planck Society
406.2K papers, 19.5M citations

90% related

French Institute of Health and Medical Research
174.2K papers, 8.3M citations

90% related

École Normale Supérieure
99.4K papers, 3M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20238
202293
2021418
2020429
2019385
2018391