scispace - formally typeset
Search or ask a question
Institution

Collège de France

EducationParis, France
About: Collège de France is a education organization based out in Paris, France. It is known for research contribution in the topics: Population & Receptor. The organization has 6541 authors who have published 11983 publications receiving 648742 citations. The organization is also known as: College de France.


Papers
More filters
Journal ArticleDOI
TL;DR: The data indicate that the push‐pull cannula method is a reliable approach for the study of the in vivo release of endogenous amino acids and provide further evidence for a role for glutamate and aspartate as neuro‐transmitters of corticostriatal neurons.
Abstract: By means of the push-pull cannula method, the outflow of endogenous amino acids was studied in the striatum of halothane-anesthetized rats. Addition of K + ions (30 mM for 4 min) to the superfusion fluid increased the release of aspartate (+116%), glutamate (+ 217%), taurine (+109%), and γ-aminobutyric acid (GABA) (−429%) whereas a prolonged decrease in the outflow of glutamine (−28%) and a delayed reduction in the efflux of tyrosine (−25%) were observed. In the absence of Ca2-, the K+-induced release of aspartate, glutamate, and GABA was blocked whereas the K + -induced release of taurine was still present. Under these conditions, the decrease in glutamine efflux was reduced and that of tyrosine was abolished. Local application of tetrodotoxin (5 μM) decreased only the outflow of glutamate (-25%). One week following lesion of the ipsilateral sensorimotor cortex the spontaneous outflow of glutamine and of tyrosine was enhanced. Despite the lack of change in their spontaneous outflow, the K +-evoked release of aspartate and glutamate was less pronounced in lesioned than in control animals, whereas the K + -evoked changes in GABA and glutamine efflux were not modified. Our data indicate that the push-pull cannula method is a reliable approach for the study of the in vivo release of endogenous amino acids. In addition, they provide further evidence for a role for glutamate and aspartate as neuro-transmitters of corticostriatal neurons.

148 citations

Journal ArticleDOI
TL;DR: In this paper, the structure and electrical conductivity of concentrated microemulsions were studied in terms of a percolation model and the changes of conductivity over 5 decades were analyzed.
Abstract: We present a study of structure and electrical conductivity in concentrated microemulsions. In the concentration range where the structure of the droplet is unchanged, the giant changes of the conductivity over 5 decades are interpreted in terms of a percolation model. Above the random packing fraction density the structure is inverted (w/o ~ o/w). The mechanism of conductivity is modified. LE JOURNAL DE PHYSIQUE LETTRES TOME 39, 15 DÉCEMBRE 1978,

148 citations

Journal ArticleDOI
TL;DR: The concept of indirect or 'allosteric' interaction between topographically distinct sites, and the subsequent 1965 Monod-Wyman-Changeux (MWC) model for the conformational change mediating them, arose around 50 years ago and has aided the understanding of human diseases and drug design.
Abstract: The concept of allosteric interactions between topographically distinct sites, and the subsequent Monod-Wyman-Changeux model proposed in 1965 for the conformational change mediating them, arose around 50 years ago. Many classic regulatory proteins follow this model, which has been expanded and challenged over the years.

148 citations


Authors

Showing all 6597 results

NameH-indexPapersCitations
Pierre Chambon211884161565
Irving L. Weissman2011141172504
David R. Williams1782034138789
Kari Alitalo174817114231
Pierre Bourdieu153592194586
Stanislas Dehaene14945686539
Howard L. Weiner144104791424
Alain Fischer14377081680
Yves Agid14166974441
Michel Foucault140499191296
Jean-Pierre Changeux13867276462
Jean-Marie Tarascon136853137673
K. Ganga13227299004
Jacques Delabrouille13135494923
G. Patanchon12824187233
Network Information
Related Institutions (5)
Centre national de la recherche scientifique
382.4K papers, 13.6M citations

92% related

University of Paris
174.1K papers, 5M citations

92% related

Max Planck Society
406.2K papers, 19.5M citations

90% related

French Institute of Health and Medical Research
174.2K papers, 8.3M citations

90% related

École Normale Supérieure
99.4K papers, 3M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20238
202293
2021418
2020429
2019385
2018391