scispace - formally typeset
Search or ask a question
Institution

Collège de France

EducationParis, France
About: Collège de France is a education organization based out in Paris, France. It is known for research contribution in the topics: Population & Dopamine. The organization has 6541 authors who have published 11983 publications receiving 648742 citations. The organization is also known as: College de France.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors showed that the coupling of an artificial Josephson atom coupled to a transmission line resonator can reach values greater than 1, where α is the fine structure constant.
Abstract: After reviewing the limitation by the fine structure constant α of the dimensionless coupling constant of an hydrogenic atom with a mode of the electromagnetic field in a cavity, we show that the situation presents itself differently for an artificial Josephson atom coupled to a transmission line resonator. Whereas the coupling constant for the case where such an atom is placed inside the dielectric of the resonator is proportional to α1/2, the coupling of the Josephson atom when it is placed in series with the conducting elements of the resonator is proportional to α-1/2 and can reach values greater than 1.

255 citations

Journal ArticleDOI
Gérard Couly1, Anne Grapin-Botton1, P. Coltey1, B. Ruhin1, N M Le Douarin1 
TL;DR: This work has investigated the relationships between Hox gene expression and the level of plasticity that neural crest cells display when they are led to migrate to an ectopic environment and confirmed the plasticity observed 24 years ago for the precursors of the PNS.
Abstract: In addition to pigment cells, and neural and endocrine derivatives, the neural crest is characterized by its ability to yield mesenchymal cells. In amniotes, this property is restricted to the cephalic region from the mid-diencephalon to the end of rhombomere 8 (level of somites 4/5). The cephalic neural crest is divided into two domains: an anterior region corresponding to the diencephalon, mesencephalon and metencephalon (r1, r2) in which expression of Hox genes is never observed, and a posterior domain in which neural crest cells exhibit (with a few exceptions) the same Hox code as the rhombomeres from which they originate. By altering the normal distribution of neural crest cells in the branchial arches through appropriate embryonic manipulations, we have investigated the relationships between Hox gene expression and the level of plasticity that neural crest cells display when they are led to migrate to an ectopic environment. We made the following observations. (i) Hox gene expression is not altered in neural crest cells by their transposition to ectopic sites. (ii) Expression of Hox genes by the BA ectoderm does not depend upon an induction by the neural crest. This second finding further supports the concept of segmentation of the cephalic ectoderm into ectomeres (Couly and Le Douarin, 1990). According to this concept, metameres can be defined in large bands of ectoderm including not only the CNS and the neural crest but also the corresponding superficial ectoderm fated to cover craniofacial primordia. (iii) The construction of a lower jaw requires the environment provided by the ectomesodermal components of BA1 or BA2 associated with the Hox gene non-expressing neural crest cells. Hox gene-expressing neural crest cells are unable to yield the lower jaw apparatus including the entoglossum and basihyal even in the BA1 environment. In contrast, the posterior part of the hyoid bone can be constructed by any region of the neural crest cells whether or not they are under the regulatory control of Hox genes. Such is also the case for the neural and connective tissues (including those comprising the cardiovascular system) of neural crest origin, upon which no segmental restriction is imposed. The latter finding confirms the plasticity observed 24 years ago (Le Douarin and Teillet, 1974) for the precursors of the PNS.

254 citations

Journal ArticleDOI
01 Aug 1997-Neuron
TL;DR: Paranodin, a prominent 180 kDa transmembrane neuronal glycoprotein, was purified and cloned from adult rat brain, and found to be highly concentrated in axonal membranes at their junction with myelinating glial cells, in paranodes of central and peripheral nerve fibers.

254 citations

Journal ArticleDOI
10 Mar 2009-PLOS ONE
TL;DR: This study shows that nuclear staining is a simple method for identifying MSNs and other striatal neurons and unambiguously confirms the degree of segregation of MSNs in the mouse striatum and allows the full exploitation of results obtained with BAC-transgenic mice.
Abstract: Precise identification of neuronal populations is a major challenge in neuroscience. In the striatum, more than 95% of neurons are GABAergic medium-sized spiny neurons (MSNs), which form two intermingled populations distinguished by their projections and protein content. Those expressing dopamine D1-receptors (D1Rs) project preferentially to the substantia nigra pars reticulata (SNr), whereas those expressing dopamine D2- receptors (D2Rs) project preferentially to the lateral part of the globus pallidus (LGP). The degree of segregation of these populations has been a continuous subject of debate, and the recent introduction of bacterial artificial chromosome (BAC) transgenic mice expressing fluorescent proteins driven by specific promoters was a major progress to facilitate striatal neuron identification. However, the fraction of MSNs labeled in these mice has been recently called into question, casting doubt on the generality of results obtained with such approaches. Here, we performed an in-depth quantitative analysis of striatal neurons in drd1a-EGFP and drd2-EGFP mice. We first quantified neuronal and non-neuronal populations in the striatum, based on nuclear staining with TO-PRO-3, and immunolabeling for NeuN, DARPP-32 (dopamine- and cAMP-regulated phosphoprotein Mr∼32,000), and various markers for interneurons. TO-PRO-3 staining was sufficient to identify MSNs by their typical nuclear morphology and, with a good probability, interneuron populations. In drd1a-EGFP/drd2-EGFP double transgenic mice all MSNs expressed EGFP, which was driven in about half of them by drd1a promoter. Retrograde labeling showed that all MSNs projecting to the SNr expressed D1R and very few D2R (<1%). In contrast, our results were compatible with the existence of some D1R-EGFP-expressing fibers giving off terminals in the LGP. Thus, our study shows that nuclear staining is a simple method for identifying MSNs and other striatal neurons. It also unambiguously confirms the degree of segregation of MSNs in the mouse striatum and allows the full exploitation of results obtained with BAC-transgenic mice.

253 citations

Journal ArticleDOI
TL;DR: The brain pathology, is, to a very great extent, a pathology of glia, which, when falling to function properly, determines the degree of neuronal death, the outcome and the scale of neurological deficit.
Abstract: Neuroglia represented by astrocytes, oligodendrocytes and microglial cells provide for numerous vital functions. Glial cells shape the micro-architecture of the brain matter; they are involved in information transfer by virtue of numerous plasmalemmal receptors and channels; they receive synaptic inputs; they are able to release 'glio'transmitters and produce long-range information exchange; finally they act as pluripotent neural precursors and some of them can even act as stem cells, which provide for adult neurogenesis. Recent advances in gliology emphasised the role of glia in the progression and handling of the insults to the nervous system. The brain pathology, is, to a very great extent, a pathology of glia, which, when falling to function properly, determines the degree of neuronal death, the outcome and the scale of neurological deficit. Glial cells are central in providing for brain homeostasis. As a result glia appears as a brain warden, and as such it is intrinsically endowed with two opposite features: it protects the nervous tissue as long as it can, but it also can rapidly assume the guise of a natural killer, trying to eliminate and seal the damaged area, to save the whole at the expense of the part.

252 citations


Authors

Showing all 6597 results

NameH-indexPapersCitations
Pierre Chambon211884161565
Irving L. Weissman2011141172504
David R. Williams1782034138789
Kari Alitalo174817114231
Pierre Bourdieu153592194586
Stanislas Dehaene14945686539
Howard L. Weiner144104791424
Alain Fischer14377081680
Yves Agid14166974441
Michel Foucault140499191296
Jean-Pierre Changeux13867276462
Jean-Marie Tarascon136853137673
K. Ganga13227299004
Jacques Delabrouille13135494923
G. Patanchon12824187233
Network Information
Related Institutions (5)
Centre national de la recherche scientifique
382.4K papers, 13.6M citations

92% related

University of Paris
174.1K papers, 5M citations

92% related

Max Planck Society
406.2K papers, 19.5M citations

90% related

French Institute of Health and Medical Research
174.2K papers, 8.3M citations

90% related

École Normale Supérieure
99.4K papers, 3M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20238
202293
2021418
2020429
2019385
2018391