scispace - formally typeset
Search or ask a question

Showing papers by "Colorado State University published in 2001"


Journal ArticleDOI
20 Jul 2001-Science
TL;DR: The years 1995 to 2000 experienced the highest level of North Atlantic hurricane activity in the reliable record, and the present high level of hurricane activity is likely to persist for an additional ∼10 to 40 years.
Abstract: The years 1995 to 2000 experienced the highest level of North Atlantic hurricane activity in the reliable record. Compared with the generally low activity of the previous 24 years (1971 to 1994), the past 6 years have seen a doubling of overall activity for the whole basin, a 2.5-fold increase in major hurricanes (>/=50 meters per second), and a fivefold increase in hurricanes affecting the Caribbean. The greater activity results from simultaneous increases in North Atlantic sea-surface temperatures and decreases in vertical wind shear. Because these changes exhibit a multidecadal time scale, the present high level of hurricane activity is likely to persist for an additional approximately 10 to 40 years. The shift in climate calls for a reevaluation of preparedness and mitigation strategies.

1,601 citations


Journal ArticleDOI
08 Nov 2001-Nature
TL;DR: An overview of the current state of knowledge of global and regional patterns of carbon exchange by terrestrial ecosystems is provided, confirming that the terrestrial biosphere was largely neutral with respect to net carbon exchange during the 1980s, but became a net carbon sink in the 1990s.
Abstract: Knowledge of carbon exchange between the atmosphere, land and the oceans is important, given that the terrestrial and marine environments are currently absorbing about half of the carbon dioxide that is emitted by fossil-fuel combustion. This carbon uptake is therefore limiting the extent of atmospheric and climatic change, but its long-term nature remains uncertain. Here we provide an overview of the current state of knowledge of global and regional patterns of carbon exchange by terrestrial ecosystems. Atmospheric carbon dioxide and oxygen data confirm that the terrestrial biosphere was largely neutral with respect to net carbon exchange during the 1980s, but became a net carbon sink in the 1990s. This recent sink can be largely attributed to northern extratropical areas, and is roughly split between North America and Eurasia. Tropical land areas, however, were approximately in balance with respect to carbon exchange, implying a carbon sink that offset emissions due to tropical deforestation. The evolution of the terrestrial carbon sink is largely the result of changes in land use over time, such as regrowth on abandoned agricultural land and fire prevention, in addition to responses to environmental changes, such as longer growing seasons, and fertilization by carbon dioxide and nitrogen. Nevertheless, there remain considerable uncertainties as to the magnitude of the sink in different regions and the contribution of different processes.

1,291 citations


Journal ArticleDOI
TL;DR: In this article, the authors discuss how workers formulate appraisals of justice, why they do so, and what precisely is being appraised, and provide a framework for reviewing the current state of our knowledge, proposing new research paradigms, and providing directions for future inquiry.

1,261 citations


Journal ArticleDOI
TL;DR: In this article, the influence of improved grassland management practices and conversion into grasslands on soil C worldwide to assess the potential for C sequestration was reviewed. But the authors focused on the top 10 cm of soil.
Abstract: Grasslands are heavily relied upon for food and forage production. A key component for sustaining production in grassland ecosystems is the maintenance of soil organic matter (SOM), which can be strongly influenced by management. Many management techniques intended to increase forage production may potentially increase SOM, thus sequestering atmospheric carbon (C). Further, conversion from either cultivation or native vegetation into grassland could also sequester atmospheric carbon. We reviewed studies examining the influence of improved grassland management practices and conversion into grasslands on soil C worldwide to assess the potential for C sequestration. Results from 115 studies containing over 300 data points were analyzed. Management improvements included fertilization (39%), improved grazing management (24%), conversion from cul- tivation (15%) and native vegetation (15%), sowing of legumes (4%) and grasses (2%), earthworm introduction (1%), and irrigation (1%). Soil C content and concentration in- creased with improved management in 74% of the studies, and mean soil C increased with all types of improvement. Carbon sequestration rates were highest during the first 40 yr after treatments began and tended to be greatest in the top 10 cm of soil. Impacts were greater in woodland and grassland biomes than in forest, desert, rain forest, or shrubland biomes. Conversion from cultivation, the introduction of earthworms, and irrigation resulted in the largest increases. Rates of C sequestration by type of improvement ranged from 0.1 1 to 3.04 Mg C-ha-l yr-l, with a mean of 0.54 Mg C-ha-l yr-l, and were highly influenced by biome type and climate. We conclude that grasslands can act as a significant carbon sink with the implementation of improved management.

1,240 citations


01 Jan 2001
TL;DR: In this paper, the influence of improved grassland management practices and conversion into grasslands on soil C worldwide to assess the potential for C sequestration was reviewed. But, the results were limited to the top 10 cm of soil.
Abstract: Grasslands are heavily relied upon for food and forage production. A key component for sustaining production in grassland ecosystems is the maintenance of soil organic matter (SOM), which can be strongly influenced by management. Many management techniques intended to increase forage production may potentially increase SOM, thus sequestering atmospheric carbon (C). Further, conversion from either cultivation or native vegetation into grassland could also sequester atmospheric carbon. We reviewed studies examining the influence of improved grassland management practices and conversion into grasslands on soil C worldwide to assess the potential for C sequestration. Results from 115 studies containing over 300 data points were analyzed. Management improvements included fertilization (39%), improved grazing management (24%), conversion from cultivation (15%) and native vegetation (15%), sowing of legumes (4%) and grasses (2%), earthworm introduction (1%), and irrigation (1%). Soil C content and concentration increased with improved management in 74% of the studies, and mean soil C increased with all types of improvement. Carbon sequestration rates were highest during the first 40 yr after treatments began and tended to be greatest in the top 10 cm of soil. Impacts were greater in woodland and grassland biomes than in forest, desert, rain forest, or shrubland biomes. Conversion from cultivation, the introduction of earthworms, and irrigation resulted in the largest increases. Rates of C sequestration by type of improvement ranged from 0.11 3.04 Mg C.ha(-1) yr(-1), with a mean of 0.54 Mg C.ha(-1).yr(-1) and were highly influenced by biome type and climate. We conclude that grasslands can act as a significant carbon sink with the implementation of improved management.

1,236 citations


Book
15 Oct 2001
TL;DR: A detailed introduction to the principles of Doppler and polarimetric radar, focusing in particular on their use in the analysis of weather systems, is provided in this article, where the authors discuss background topics such as electromagnetic scattering, polarization, and wave propagation.
Abstract: This 2001 book provides a detailed introduction to the principles of Doppler and polarimetric radar, focusing in particular on their use in the analysis of weather systems. The design features and operation of practical radar systems are highlighted throughout the book in order to illustrate important theoretical foundations. The authors begin by discussing background topics such as electromagnetic scattering, polarization, and wave propagation. They then deal in detail with the engineering aspects of pulsed Doppler polarimetric radar, including the relevant signal theory, spectral estimation techniques, and noise considerations. They close by examining a range of key applications in meteorology and remote sensing. The book will be of great use to graduate students of electrical engineering and atmospheric science as well as to practitioners involved in the applications of polarimetric radar systems.

1,043 citations


Journal ArticleDOI
19 Oct 2001-Science
TL;DR: In this article, Landsat and Geostationary Operational Environmental Satellite imagery show that deforested areas of Costa Rica's Caribbean lowlands remain relatively cloud-free when forested regions have well-developed dry season cumulus cloud fields.
Abstract: Tropical montane cloud forests (TMCFs) depend on predictable, frequent, and prolonged immersion in cloud. Clearing upwind lowland forest alters surface energy budgets in ways that influence dry season cloud fields and thus the TMCF environment. Landsat and Geostationary Operational Environmental Satellite imagery show that deforested areas of Costa Rica's Caribbean lowlands remain relatively cloud-free when forested regions have well-developed dry season cumulus cloud fields. Further, regional atmospheric simulations show that cloud base heights are higher over pasture than over tropical forest areas under reasonable dry season conditions. These results suggest that land use in tropical lowlands has serious impacts on ecosystems in adjacent mountains.

1,021 citations


Journal ArticleDOI
TL;DR: In this paper, the influence of place attachment and place identity on environmentally responsible behavior was examined using a structural equation model, and it was shown that place identity mediated the relationship between place dependence and responsible behavior.
Abstract: This article illustrates how an attachment to a local natural resource can influence environmentally responsible behavior (ERB) in an individual's everyday life. Our study showed that 4 general (e.g., talking with others about environmental issues) and 3 specific (e.g., sorting recyclable trash) behavioral indicators reflected a single environmentally responsible latent construct. Following previous research, we operationalized place attachment using 2 concepts: (a) place dependence (i.e., a functional attachment) and (b) place identity (i.e., an emotional attachment). The influence of these two concepts on ERB was examined using a structural equation model. Data for this analysis were obtained from a survey of youth, 14-17 years of age (N = 182), who participated in local natural resource work programs. Results supported the predicted relationships. As hypothesized, place identity mediated the relationship between place dependence and responsible behavior. Place dependence influenced place ident...

943 citations


Journal ArticleDOI
06 Jul 2001-Science
TL;DR: The recent trend in the NAM toward its high-index polarity with stronger subpolar westerlies has tended to reduce the severity of winter weather over most middle- and high-latitude Northern Hemisphere continental regions.
Abstract: The Northern Hemisphere annular mode (NAM) (also known as the North Atlantic Oscillation) is shown to exert a strong influence on wintertime climate, not only over the Euro-Atlantic half of the hemisphere as documented in previous studies, but over the Pacific half as well. It affects not only the mean conditions, but also the day-to-day variability, modulating the intensity of mid-latitude storms and the frequency of occurrence of high-latitude blocking and cold air outbreaks throughout the hemisphere. The recent trend in the NAM toward its high-index polarity with stronger subpolar westerlies has tended to reduce the severity of winter weather over most middle- and high-latitude Northern Hemisphere continental regions.

865 citations


Journal ArticleDOI
TL;DR: An information-theoretic paradigm for analysis of ecological data, based on Kullback–Leibler information, that is an extension of likelihood theory and avoids the pitfalls of null hypothesis testing is described.
Abstract: We describe an information-theoretic paradigm for analysis of ecological data, based on Kullback–Leibler information, that is an extension of likelihood theory and avoids the pitfalls of null hypothesis testing. Information-theoretic approaches emphasise a deliberate focus on the a priori science in developing a set of multiple working hypotheses or models. Simple methods then allow these hypotheses (models) to be ranked from best to worst and scaled to reflect a strength of evidence using the likelihood of each model (gi), given the data and the models in the set (i.e. L(gi | data)). In addition, a variance component due to model-selection uncertainty is included in estimates of precision. There are many cases where formal inference can be based on all the models in the a priori set and this multi-model inference represents a powerful, new approach to valid inference. Finally, we strongly recommend inferences based on a priori considerations be carefully separated from those resulting from some form of data dredging. An example is given for questions related to age- and sex-dependent rates of tag loss in elephant seals (Mirounga leonina).

863 citations


Journal ArticleDOI
27 Jul 2001-Science
TL;DR: Access to reliable forecasts of ecosystem state, ecosystem services, and natural capital will increase the ability to forecast ecosystem change and create a capacity to produce, evaluate, and communicate forecasts of critical ecosystem services.
Abstract: Planning and decision-making can be improved by access to reliable forecasts of ecosystem state, ecosystem services, and natural capital. Availability of new data sets, together with progress in computation and statistics, will increase our ability to forecast ecosystem change. An agenda that would lead toward a capacity to produce, evaluate, and communicate forecasts of critical ecosystem services requires a process that engages scientists and decision-makers. Interdisciplinary linkages are necessary because of the climate and societal controls on ecosystems, the feedbacks involving social change, and the decision-making relevance of forecasts.

Journal ArticleDOI
TL;DR: The latest improvements applied to the Goddard profiling algorithm (GPROF) are described, particularly as they apply to the Tropical Rainfall Measuring Mission (TRMM), and the new algorithm makes use of emission and scattering indices instead of individual brightness temperatures.
Abstract: This paper describes the latest improvements applied to the Goddard profiling algorithm (GPROF), particularly as they apply to the Tropical Rainfall Measuring Mission (TRMM). Most of these improvements, however, are conceptual in nature and apply equally to other passive microwave sensors. The improvements were motivated by a notable overestimation of precipitation in the intertropical convergence zone. This problem was traced back to the algorithm's poor separation between convective and stratiform precipitation coupled with a poor separation between stratiform and transition regions in the a priori cloud model database. In addition to now using an improved convective–stratiform classification scheme, the new algorithm also makes use of emission and scattering indices instead of individual brightness temperatures. Brightness temperature indices have the advantage of being monotonic functions of rainfall. This, in turn, has allowed the algorithm to better define the uncertainties needed by the sc...

Journal ArticleDOI
TL;DR: Platelet-released sphingosine 1-phosphate, linked to Rac- and Rho-dependent cytoskeletal rearrangement, may act late in angiogenesis to stabilize newly formed vessels, which often display abnormally increased vascular permeability.
Abstract: Substances released by platelets during blood clotting are essential participants in events that link hemostasis and angiogenesis and ensure adequate wound healing and tissue injury repair. We assessed the participation of sphingosine 1-phosphate (Sph-1-P), a biologically active phosphorylated lipid growth factor released from activated platelets, in the regulation of endothelial monolayer barrier integrity, which is key to both angiogenesis and vascular homeostasis. Sph-1-P produced rapid, sustained, and dose-dependent increases in transmonolayer electrical resistance (TER) across both human and bovine pulmonary artery and lung microvascular endothelial cells. This substance also reversed barrier dysfunction elicited by the edemagenic agent thrombin. Sph-1-P-mediated barrier enhancement was dependent upon G(ialpha)-receptor coupling to specific members of the endothelial differentiation gene (Edg) family of receptors (Edg-1 and Edg-3), Rho kinase and tyrosine kinase-dependent activation, and actin filament rearrangement. Sph-1-P-enhanced TER occurred in conjunction with Rac GTPase- and p21-associated kinase-dependent endothelial cortical actin assembly with recruitment of the actin filament regulatory protein, cofilin. Platelet-released Sph-1-P, linked to Rac- and Rho-dependent cytoskeletal rearrangement, may act late in angiogenesis to stabilize newly formed vessels, which often display abnormally increased vascular permeability.

Journal ArticleDOI
TL;DR: In this paper, the authors developed a model that explains how supplier behaviors and the management of suppliers affect a customer firm's direct product, acquisition, and operations costs, and proposed that these costs mediate the relationship between buyer-supplier relationship behaviors.
Abstract: Academic literature and business practice are directing increased attention to the importance of creating value in buyer-supplier relationships. One method for creating value is to reduce costs in commercial exchange. The authors develop a model that explains how supplier behaviors and the management of suppliers affect a customer firm’s direct product, acquisition, and operations costs. The model proposes that these costs mediate the relationship between buyer-supplier relationship behaviors and the customer firm’s intentions to expand future purchases from the supplier. The model is tested on data collected from almost 500 buying organizations in the United States and Germany. The results indicate that increased communication frequency, different forms of supplier accommodation, product quality, and the geographic closeness of the supplier’s facilities to the customer’s buying location lower customer firm costs. In addition, customer firms intend to increase purchases from suppliers that provid...

Journal ArticleDOI
TL;DR: In this paper, two intense dust storms were generated over the Gobi desert by springtime low-pressure systems descending from the northwest, and the windblown dust was detected and its evolution followed by its yellow color on SeaWiFS satellite images, routine surface-based monitoring and through serendipitous observations.
Abstract: On April 15 and 19, 1998, two intense dust storms were generated over the Gobi desert by springtime low-pressure systems descending from the northwest. The windblown dust was detected and its evolution followed by its yellow color on SeaWiFS satellite images, routine surface-based monitoring, and through serendipitous observations. The April 15 dust cloud was recirculating, and it was removed by a precipitating weather system over east Asia. The April 19 dust cloud crossed the Pacific Ocean in 5 days, subsided to the surface along the mountain ranges between British Columbia and California, and impacted severely the optical and the concentration environments of the region. In east Asia the dust clouds increased the albedo over the cloudless ocean and land by up to 10–20%, but it reduced the near-UV cloud reflectance, causing a yellow coloration of all surfaces. The yellow colored backscattering by the dust eludes a plausible explanation using simple Mie theory with constant refractive index. Over the West Coast the dust layer has increased the spectrally uniform optical depth to about 0.4, reduced the direct solar radiation by 30–40%, doubled the diffuse radiation, and caused a whitish discoloration of the blue sky. On April 29 the average excess surface-level dust aerosol concentration over the valleys of the West Coast was about 20–50 μg/m3 with local peaks >100 μg/m3. The dust mass mean diameter was 2–3 μm, and the dust chemical fingerprints were evident throughout the West Coast and extended to Minnesota. The April 1998 dust event has impacted the surface aerosol concentration 2–4 times more than any other dust event since 1988. The dust events were observed and interpreted by an ad hoc international web-based virtual community. It would be useful to set up a community-supported web-based infrastructure to monitor the global aerosol pattern for such extreme aerosol events, to alert and to inform the interested communities, and to facilitate collaborative analysis for improved air quality and disaster management.

Journal ArticleDOI
TL;DR: A cell-based simulation model is built that features two competing plant species, different grazing patterns, and different sources of vegetation pattern to identify why grazing causes increases in the spatial heterogeneity of vegetation in some cases, but decreases in others.
Abstract: Grazing can alter the spatial heterogeneity of vegetation, influencing ecosystem processes and biodiversity. Our objective was to identify why grazing causes increases in the spatial heterogeneity of vegetation in some cases, but decreases in others. The immediate effect of grazing on heterogeneity depends on the interaction between the spatial pattern of grazing and the pre-existing spatial pattern of vegetation. Depending on the scale of observation and on the factors that determine animal distribution, grazing patterns may be stronger or weaker than vegetation patterns, or may mirror the spatial structure of vegetation. For each possible interaction between these patterns, we make a prediction about resulting changes in the spatial heterogeneity of vegetation. Case studies from the literature support our predictions, although ecosystems characterized by strong plant-soil interactions present important exceptions. While the processes by which grazing causes increases in heterogeneity are clear, how grazing leads to decreases in heterogeneity is less so. To explore how grazing can consistently dampen the fine-scale spatial patterns of competing plant species, we built a cell-based simulation model that features two competing plant species, different grazing patterns, and different sources of vegetation pattern. Only the simulations that included neighborhood interactions as a source of vegetation pattern produced results consistent with the predictions we derived from the literature review.

Journal ArticleDOI
TL;DR: This review focuses on tree and forest responses at boreal and temperate latitudes, ranging from the cellular to the ecosystem level, and management is critical for a positive response of forest growth to a warmer climate.
Abstract: Although trees have responded to global warming in the past - to temperatures higher than they are now - the rate of change predicted in the 21st century is likely to be unprecedented. Greenhouse gas emissions could cause a 3-6°C increase in mean land surface temperature at high and temperate latitudes. Despite this, few experiments have isolated the effects of temperature for this scenario on trees and forests. This review focuses on tree and forest responses at boreal and temperate latitudes, ranging from the cellular to the ecosystem level. Adaptation to varying temperatures revolves around the trade-off between utilizing the full growing season and minimizing frost damage through proper timing of hardening in autumn and dehardening in spring. But the evolutionary change in these traits must be sufficiently rapid to compensate for the temperature changes. Many species have a positive response to increased temperature - but how close are we to the optima? Management is critical for a positive response of forest growth to a warmer climate, and selection of the best species for the new conditions will be of vital importance. Contents Summary 369 I. Introduction 370 II. Photosynthesis and respiration 370 III. Soil organic matter decomposition and mineralization 373 IV. Phenology and frost hardiness 376 V. Whole tree experimental responses to warming 380 VI. Changes in species distribution at warmer temperatures 381 VII. Adaptation and evolution 383 VIII. Ecosystem level responses to warming 387 Acknowledgements 390 References 390 Appendix I. Temperature response functions 399.

Journal ArticleDOI
09 Aug 2001-Nature
TL;DR: After mechanically stimulating the hindlimbs of adult sheep on a daily basis for a year with 20-minute bursts of very-low-magnitude, high-frequency vibration, the density of the spongy bone in the proximal femur is significantly increased compared to controls.
Abstract: Although the skeleton's adaptability to load-bearing has been recognized for over a century, the specific mechanical components responsible for strengthening it have not been identified. Here we show that after mechanically stimulating the hindlimbs of adult sheep on a daily basis for a year with 20-minute bursts of very-low-magnitude, high-frequency vibration, the density of the spongy (trabecular) bone in the proximal femur is significantly increased (by 34.2%) compared to controls. As the strain levels generated by this treatment are three orders of magnitude below those that damage bone tissue, this anabolic, non-invasive stimulus may have potential for treating skeletal conditions such as osteoporosis.

Journal ArticleDOI
TL;DR: It is demonstrated via simulation results that the opportunistic transmission scheduling scheme is robust to estimation errors and also works well for nonstationary scenarios, resulting in performance improvements of 20%-150% compared with a scheduling scheme that does not take into account channel conditions.
Abstract: We present an "opportunistic" transmission scheduling policy that exploits time-varying channel conditions and maximizes the system performance stochastically under a certain resource allocation constraint. We establish the optimality of the scheduling scheme and also that every user experiences a performance improvement over any nonopportunistic scheduling policy when users have independent performance values. We demonstrate via simulation results that the scheme is robust to estimation errors and also works well for nonstationary scenarios, resulting in performance improvements of 20%-150% compared with a scheduling scheme that does not take into account channel conditions. Last, we discuss an extension of our opportunistic scheduling scheme to improve "short-term" performance.

Journal ArticleDOI
TL;DR: In this paper, the effects of DW cycles on aggregate stability, SOM dynamics, and fungal and bacterial populations in a Weld silt loam soil (Aridic Paleustoll) were evaluated.
Abstract: Aggregate dynamics and their relationship to the microbial community have been suggested as key factors controlling SOM dynamics. Dry–wet (DW) cycles are thought to enhance aggregate turnover and decomposition of soil organic matter (SOM), particularly in tilled soils. The objective of this study was to evaluate the effects of DW cycles on aggregate stability, SOM dynamics, and fungal and bacterial populations in a Weld silt loam soil (Aridic Paleustoll). Samples, taken from 250 μm sieved air-dried soil (i.e. free of macroaggregates > 250 μm), were incubated with 13C-labeled wheat residue. In one set of soil samples, fungal growth was suppressed using a fungicide (Captan) in order to discern the effect of dry–wet cycles on fungal and bacterial populations. Aggregate formation was followed during the first 14 d of incubation. After this period, one set of soil samples was subjected to four DW cycles, whereas another set, as a control, was kept at field capacity (FC). Over 74 d, total and wheat-derived respiration, size distribution of water stable aggregates and fungal and bacterial biomass were measured. We determined native and labeled C dynamics of three particulate organic matter (POM) fractions related to soil structure: the free light fraction (LF), and the coarse (250–2000 μm) and fine (53–250 μm) intra-aggregate POM fraction (iPOM). In the fungicide treated soil samples, fungal growth was significantly reduced and no large macroaggregates (> 2 mm) were formed, whereas without addition of fungicide, fungi represented the largest part of the microbial biomass (66%) and 30% of the soil dry weight was composed of large macroaggregates. During macroaggregate formation, labeled free LF-C significantly decreased whereas labeled coarse iPOM-C increased, indicating that macroggregates are formed around fresh wheat residue (free LF), which is consequently incorporated and becomes coarse iPOM. The first drying and wetting event reduced the amount of large macroaggregates from 30 to 21% of the total soil weight. However, macroaggregates became slake-resistant after two dry-wet cycles. Fine iPOM-C was significantly lower in soil after two dry–wet cycles compared to soil kept at FC. We conclude that more coarse iPOM is decomposed into fine iPOM in macroaggregates not exposed to DW cycles due to a slower macroaggregate turnover. In addition, when macroaggregates, subjected to dry–wet cycles, became slake-resistant (d 44) and consequently macroaggregate turnover decreased, fine iPOM accumulated. In conclusion, differences in fine iPOM accumulation in DW vs. control macroaggregates are attributed to differences in macroaggregate turnover.

Journal ArticleDOI
TL;DR: In the Arctic, where wind transport of snow is common, the depth and insulative properties of the snow cover can be determined as much by the wind as by spatial variations in precipitation.
Abstract: In the Arctic, where wind transport of snow is common, the depth and insulative properties of the snow cover can be determined as much by the wind as by spatial variations in precipitation. Where shrubs are more abundant and larger, greater amounts of drifting snow are trapped and suffer less loss due to sublimation. The snow in shrub patches is both thicker and a better thermal insulator per unit thickness than the snow outside of shrub patches. As a consequence, winter soil surface temperatures are substantially higher, a condition that can promote greater winter decomposition and nutrient release, thereby providing a positive feedback that could enhance shrub growth. If the abundance, size, and coverage of arctic shrubs increases in response to climate warming, as is expected, snow‐shrub interactions could cause a widespread increase (estimated 10%‐25%) in the winter snow depth. This would increase spring runoff, winter soil temperatures, and probably winter CO 2 emissions. The balance between these winter effects and changes in the summer energy balance associated with the increase in shrubs probably depends on shrub density, with the threshold for winter snow trapping occurring at lower densities than the threshold for summer effects such as shading. It is suggested that snow‐shrub interactions warrant further investigation as a possible factor contributing to the transition of the arctic land surface from moist graminoid tundra to shrub tundra in response to climatic warming.

Journal ArticleDOI
TL;DR: In this paper, the authors used the Re-Os (rhenium-osmium) chronometer applied to molybdenite (MoS2) to determine the age.
Abstract: The Re–Os (rhenium–osmium) chronometer applied to molybdenite (MoS2) is now demonstrated to be remarkably robust, surviving intense deformation and high-grade thermal metamorphism. Successful dating of molybdenite is dependent on proper preparation of the mineral separate and analysis of a critical quantity of molybdenite, unique to each sample, such that recognized spatial decoupling of 187Re parent and 187Os daughter within individual molybdenite crystals is overcome. Highly precise, accurate and reproducible age results are derived through isotope dilution and negative thermal ion mass spectrometry (ID-NTIMS). Spatial decoupling of parent–daughter precludes use of the laser ablation ICP-MS microanalytical technique for Re–Os dating of molybdenite. The use of a reference or control sample is necessary to establish laboratory credibility and for interlaboratory comparisons. The Rb–Sr, K–Ar and 40Ar/39Ar chronometers are susceptible to chemical and thermal disturbance, particularly in terranes that have experienced subsequent episodes of hydrothermal/magmatic activity, and therefore should not be used as a basis for establishing accuracy in Re–Os dating of molybdenite, as has been done in the past. Re–Os ages for molybdenite are almost always in agreement with observed geological relationships and, when available, with zircon and titanite U–Pb ages. For terranes experiencing multiple episodes of metamorphism and deformation, molybdenite is not complicated by overgrowths as is common for some minerals used in U–Pb dating (e.g. zircon, monazite, xenotime), nor are Re and Os mobilized beyond the margins of individual crystals during solid-state recrystallization. Moreover, inheritance of older molybdenite cores, incorporation of common Os, and radiogenic Os loss are exceedingly rare, whereas inheritance, common Pb and Pb loss are common complications in U–Pb dating techniques. Therefore, molybdenite ages may serve as point-in-time markers for age comparisons.

Journal ArticleDOI
TL;DR: In this paper, the authors hypothesized that diversity is indeed important to ecosystem function in marine CTZs because high diversity maintains positive interactions among species (facilitation and mutualism), promoting stability and resistance to invasion or other forms of disturbance.
Abstract: Estuaries and coastal wetlands are critical transition zones (CTZs) that link land, freshwater habitats, and the sea. CTZs provide essential ecological functions, including decomposition, nutrient cycling, and nutrient production, as well as regulation of fluxes of nutrients, water, particles, and organisms to and from land, rivers, and the ocean. Sediment-associated biota are integral to these functions. Functional groups considered essential to CTZ processes include heterotrophic bacteria and fungi, as well as many benthic invertebrates. Key invertebrate functions include shredding, which breaks down and recycles organic matter; suspension feeding, which collects and transports sediments across the sediment–water interface; and bioturbating, which moves sediment into or out of the seabed. In addition, macrophytes regulate many aspects of nutrient, particle, and organism dynamics above- and belowground. Animals moving within or through CTZs are vectors that transport nutrients and organic matter across terrestrial, freshwater, and marine interfaces. Significant threats to biodiversity within CTZs are posed by anthropogenic influences; eutrophication, nonnutrient pollutants, species invasions, overfishing, habitat alteration, and climate change affect species richness or composition in many coastal environments. Because biotic diversity in marine CTZ sediments is inherently low whereas their functional significance is great, shifts in diversity are likely to be particularly important. Species introductions (from invasion) or loss (from overfishing or habitat alteration) provide evidence that single-species changes can have overt, sweeping effects on CTZ structure and function. Certain species may be critically important to the maintenance of ecosystem functions in CTZs even though at present there is limited empirical evidence that the number of species in CTZ sediments is critical. We hypothesized that diversity is indeed important to ecosystem function in marine CTZs because high diversity maintains positive interactions among species (facilitation and mutualism), promoting stability and resistance to invasion or other forms of disturbance. The complexity of interactions among species and feedbacks with ecosystem functions suggests that comparative (mensurative) and manipulative approaches will be required to elucidate the role of diversity in sustaining CTZ functions.

Journal ArticleDOI
TL;DR: In this paper, specific binding of biotinilated bovine serum albumin (bBSA) and tetramethylrhodamine-labeled streptavidin (SAv−TMR) was observed by conjugating bBSA to CdSe−ZnS core−shell quantum dots (QDs) and observing enhanced TMR fluorescence caused by fluorescence resonance energy transfer (FRET) from the QD donors to the TMR acceptors.
Abstract: Specific binding of biotinilated bovine serum albumin (bBSA) and tetramethylrhodamine-labeled streptavidin (SAv−TMR) was observed by conjugating bBSA to CdSe−ZnS core−shell quantum dots (QDs) and observing enhanced TMR fluorescence caused by fluorescence resonance energy transfer (FRET) from the QD donors to the TMR acceptors. Because of the broad absorption spectrum of the QDs, efficient donor excitation could occur at a wavelength that was well resolved from the absorption spectrum of the acceptor, thereby minimizing direct acceptor excitation. Appreciable overlap of the donor emission and acceptor absorption spectra was achieved by size-tuning the QD emission spectrum into resonance with the acceptor absorption spectrum, and cross-talk between the donor and acceptor emission was minimized because of the narrow, symmetrically shaped QD emission spectrum. Evidence for an additional, nonspecific QD−TMR energy transfer mechanism that caused quenching of the QD emission without a corresponding TMR fluoresce...

Journal ArticleDOI
TL;DR: The Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) has a unique low-light imaging capability developed for the detection of clouds using moonlight.
Abstract: The Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) has a unique low-light imaging capability developed for the detection of clouds using moonlight. In addition to moonlit clouds, the OLS also detects lights from human settlements, fires, gas flares, heavily lit fishing boats, lightning and the aurora. By analysing the location, frequency, and appearance of lights observed in an image time series, it is possible to distinguish four primary types of lights present at the earth's surface: human settlements, gas flares, fires, and fishing boats. We have produced a global map of the four types of light sources as observed during a 6-month time period in 1994–1995. We review a number of environmental applications that have been developed or proposed based on the night-time light data. We examine the relationship between area of lighting, population, economic activity, electric power consumption, and energy related carbon emissions for 200 nations, representing 99% of the world's population.

Journal ArticleDOI
TL;DR: This recombinant antigen has great potential to become the antigen of choice and will facilitate the standardization of reagents and implementation of WN virus surveillance in the United States and elsewhere.
Abstract: Introduction of West Nile (WN) virus into the United States in 1999 created major human and animal health concerns. Currently, no human or veterinary vaccine is available to prevent WN viral infection, and mosquito control is the only practical strategy to combat the spread of disease. Starting with a previously designed eukaryotic expression vector, we constructed a recombinant plasmid (pCBWN) that expressed the WN virus prM and E proteins. A single intramuscular injection of pCBWN DNA induced protective immunity, preventing WN virus infection in mice and horses. Recombinant plasmid-transformed COS-1 cells expressed and secreted high levels of WN virus prM and E proteins into the culture medium. The medium was treated with polyethylene glycol to concentrate proteins. The resultant, containing high-titered recombinant WN virus antigen, proved to be an excellent alternative to the more traditional suckling-mouse brain WN virus antigen used in the immunoglobulin M (IgM) antibody-capture and indirect IgG enzyme-linked immunosorbent assays. This recombinant antigen has great potential to become the antigen of choice and will facilitate the standardization of reagents and implementation of WN virus surveillance in the United States and elsewhere.

Journal ArticleDOI
TL;DR: Despite the ability of MTB 19-kDa lipoprotein to activate microbicidal and innate immune functions early in infection, TLR 2-dependent inhibition of MHC-II expression and Ag processing by MTB19-k da lipop protein during later phases of macrophage infection may prevent presentation of MTBs Ags and decrease recognition by T cells.
Abstract: Mycobacterium tuberculosis (MTB) induces vigorous immune responses, yet persists inside macrophages, evading host immunity. MTB bacilli or lysate was found to inhibit macrophage expression of class II MHC (MHC-II) molecules and MHC-II Ag processing. This report characterizes and identifies a specific component of MTB that mediates these inhibitory effects. The inhibitor was extracted from MTB lysate with Triton X-114, isolated by gel electroelution, and identified with Abs to be MTB 19-kDa lipoprotein. Electroelution- or immunoaffinity-purified MTB 19-kDa lipoprotein inhibited MHC-II expression and processing of both soluble Ags and Ag 85B from intact MTB bacilli. Inhibition of MHC-II Ag processing by either MTB bacilli or purified MTB 19-kDa lipoprotein was dependent on Toll-like receptor (TLR) 2 and independent of TLR 4. Synthetic analogs of lipopeptides from Treponema pallidum also inhibited Ag processing. Despite the ability of MTB 19-kDa lipoprotein to activate microbicidal and innate immune functions early in infection, TLR 2-dependent inhibition of MHC-II expression and Ag processing by MTB 19-kDa lipoprotein during later phases of macrophage infection may prevent presentation of MTB Ags and decrease recognition by T cells. This mechanism may allow intracellular MTB to evade immune surveillance and maintain chronic infection.

Journal ArticleDOI
TL;DR: In this paper, the authors measured fetal tissue concentrations of 10-20 p.p.t.m. of the DDT metabolite, p,p'-DDE, are correlated with reproductive malformations in male offspring.
Abstract: Chemicals that act as androgen receptor (AR) agonists and antagonists or inhibit fetal steroidogenesis can induce reproductive malformations in humans and laboratory animals. Several environmental chemicals disrupt development in rats and/or rabbits at fetal concentrations at, or near, exposure levels seen in some segments of the human population. In rats, fetal tissues concentrations of 10-20 p.p.m. of the DDT metabolite, p,p'-DDE, are correlated with reproductive abnormalities in male offspring. These concentrations are similar to those measured in first-trimester human fetal tissues in the late 1960s. The pesticides vinclozolin, procymidone, linuron and DDT are AR antagonists. They reduce male rat anogenital distance, and induce areolas at relatively low dosages. Hypospadias, agenesis of the sex accessory tissues and retained nipples are seen in the middle dosages, while undescended testes and epididymal agenesis are seen in the highest doses. Phthalate esters (PE) inhibit testosterone synthesis during fetal life, but do not appear to be AR antagonists. Prenatal administration of a single low dose of dioxin (50-1,000 ng TCDD/kg) alters the differentiation of androgen-dependent tissues at p.p.t. concentrations, but the mechanism of action likely involves interaction with a hormone-like nuclear transcription factor, the hormone-like receptor AhR, rather than AR. p,p'-DDT and p,p'-DDE, vinclozolin and di-n-butyl phthalate affect reproductive function in rabbits when administered during prenatal and/or neonatal life. Cryptorchidism and carcinoma in situ-like (CIS) testicular lesions were seen in male rabbits treated during development with p,p'-DDT or p,p'-DDE. Extrapolation of effects from rodents to humans would be enhanced if future studies incorporate determination of tissue concentrations of the active metabolites. Knowledge of the tissue concentrations of the active toxicants also would provide an important link to in-vitro studies, which provide more useful mechanistic information when they are executed at relevant concentrations.

Journal ArticleDOI
TL;DR: There is a link between triclosan and antibiotics, and the widespread use of tricrosan-containing antiseptics and disinfectants may indeed aid in development of microbial resistance, in particular cross-resistance to antibiotics.
Abstract: Triclosan is the active ingredient in a multitude of health care and consumer products with germicidal properties, which have flooded the market in recent years in response to the public's fear of communicable bacteria. Although originally thought to kill bacteria by attacking multiple cellular targets, triclosan was recently shown to target a specific bacterial fatty acid biosynthetic enzyme, enoyl-[acyl-carrier protein] reductase, in Gram-negative and Gram-positive bacteria, as well as in the Mycobacteria. Triclosan resistance mechanisms include target mutations, increased target expression, active efflux from the cell, and enzymatic inactivation/degradation. These are the same types of mechanisms involved in antibiotic resistance and some of them account for the observed cross-resistance with antibiotics in laboratory isolates. Therefore, there is a link between triclosan and antibiotics, and the widespread use of triclosan-containing antiseptics and disinfectants may indeed aid in development of microbial resistance, in particular cross-resistance to antibiotics.

Journal ArticleDOI
TL;DR: An overview of evolutionary algorithms is presented covering genetic algorithms, evolution strategies, genetic programming and evolutionary programming, and the schema theorem is reviewed and critiqued.
Abstract: An overview of evolutionary algorithms is presented covering genetic algorithms, evolution strategies, genetic programming and evolutionary programming. The schema theorem is reviewed and critiqued. Gray codes, bit representations and real-valued representations are discussed for parameter optimization problems. Parallel Island models are also reviewed, and the evaluation of evolutionary algorithms is discussed.