scispace - formally typeset
Search or ask a question
Institution

Colorado State University

EducationFort Collins, Colorado, United States
About: Colorado State University is a education organization based out in Fort Collins, Colorado, United States. It is known for research contribution in the topics: Population & Radar. The organization has 31430 authors who have published 69040 publications receiving 2724463 citations. The organization is also known as: CSU & Colorado Agricultural College.
Topics: Population, Radar, Poison control, Laser, Soil water


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the dependence of woody cover on mean annual precipitation (MAP), soil properties (texture, nitrogen mineralization potential and total phosphorus), fire regimes, and herbivory (grazer, mixed feeders and browsers) was determined for 161 savanna sites across Africa using stochastic gradient boosting, a refinement of the regression tree analysis technique.
Abstract: Aim To determine the functional relationships between, and the relative importance of, different driver variables (mean annual precipitation, soil properties, fire and herbivory) in regulating woody plant cover across broad environmental gradients in African savannas. Location Savanna grasslands of East, West and Southern Africa. Methods The dependence of woody cover on mean annual precipitation (MAP), soil properties (texture, nitrogen mineralization potential and total phosphorus), fire regimes, and herbivory (grazer, browser + mixed feeder, and elephant biomass) was determined for 161 savanna sites across Africa using stochastic gradient boosting, a refinement of the regression tree analysis technique. Results All variables were significant predictors of woody cover, collectively explaining 71% of the variance in our data set. However, their relative importance as regulators of woody cover varied. MAP was the most important predictor, followed by fire return periods, soil characteristics and herbivory regimes. Woody cover showed a strong positive dependence on MAP between 200 and 700 mm, but no dependence on MAP above this threshold when the effects of other predictors were accounted for. Fires served to reduce woody cover below rainfall-determined levels. Woody cover showed a complex, non-linear relationship with total soil phosphorus, and was negatively correlated with clay content. There was a strong negative dependence of woody cover on soil nitrogen (N) availability, suggesting that increased N-deposition may cause shifts in savannas towards more grassy states. Elephants, mixed feeders and browsers had negative effects on woody cover. Grazers, on the other hand, depressed woody cover at low biomass, but favoured woody vegetation when their biomass exceeded a certain threshold. Main conclusions Our results indicate complex and contrasting relationships between woody cover, rainfall, soil properties and disturbance regimes in savannas, and suggest that future environmental changes such as altered precipitation regimes, N-enrichment and elevated levels of CO2 are likely to have opposing, and potentially interacting, influences on the tree–grass balance in savannas.

550 citations

Journal ArticleDOI
TL;DR: In this article, the authors examine the emergence and implications of transnational climate change governance and develop a typology based on the actors involved and their authority, and the primary governance functions performed in order to steer network constituents.
Abstract: In this article we examine the emergence and implications of transnational climate-change governance. We argue that although the study of transnational relations has recently been renewed alongside a burgeoning interest in issues of global governance, the nature of transnational governance has to date received less attention. We contend that transnational governance occurs when networks operating in the transnational political sphere authoritatively steer constituents toward public goals. In order to stimulate a more systematic study of the diversity and significance of this phenomenon, the article develops a typology based on the actors involved and their authority—public, private, or hybrid—and the primary governance functions performed in order to steer network constituents—information-sharing, capacity building and implementation, or rule-setting. A comparative discussion of transnational governance networks for climate change illustrates each category and the value of the typology in assessing the mu...

549 citations

Journal ArticleDOI
TL;DR: In this article, the authors overview the short-term and long-term influences of the land surface on weather and climate, and conclude that terrestrial ecosystem dynamics on these timescales significantly influence atmospheric processes.
Abstract: This paper overviews the short-term (biophysical) and long-term (out to around 100 year timescales; biogeochemical and biogeographical) influences of the land surface on weather and climate. From our review of the literature, the evidence is convincing that terrestrial ecosystem dynamics on these timescales significantly influence atmospheric processes. In studies of past and possible future climate change, terrestrial ecosystem dynamics are as important as changes in atmospheric dynamics and composition, ocean circulation, ice sheet extent, and orbit perturbations.

548 citations

Journal ArticleDOI
TL;DR: In this article, a verification of the statistical hurricane intensity prediction scheme (SHIPS) for each year from 1997 to 2003 is described, including the addition of a method to account for the storm decay over land in 2000, the extension of the forecasts from 3 to 5 days in 2001, and the use of an operational global model for evaluation of the atmospheric predictors instead of a simple dry-adiabatic model beginning in 2001.
Abstract: Modifications to the Atlantic and east Pacific versions of the operational Statistical Hurricane Intensity Prediction Scheme (SHIPS) for each year from 1997 to 2003 are described. Major changes include the addition of a method to account for the storm decay over land in 2000, the extension of the forecasts from 3 to 5 days in 2001, and the use of an operational global model for the evaluation of the atmospheric predictors instead of a simple dry-adiabatic model beginning in 2001. A verification of the SHIPS operational intensity forecasts is presented. Results show that the 1997–2003 SHIPS forecasts had statistically significant skill (relative to climatology and persistence) out to 72 h in the Atlantic, and at 48 and 72 h in the east Pacific. The inclusion of the land effects reduced the intensity errors by up to 15% in the Atlantic, and up to 3% in the east Pacific, primarily for the shorter-range forecasts. The inclusion of land effects did not significantly degrade the forecasts at any time period. Results also showed that the 4–5-day forecasts that began in 2001 did not have skill in the Atlantic, but had some skill in the east Pacific. An experimental version of SHIPS that included satellite observations was tested during the 2002 and 2003 seasons. New predictors included brightness temperature information from Geostationary Operational Environmental Satellite (GOES) channel 4 (10.7 m) imagery, and oceanic heat content (OHC) estimates inferred from satellite altimetry observations. The OHC estimates were only available for the Atlantic basin. The GOES data significantly improved the east Pacific forecasts by up to 7% at 12–72 h. The combination of GOES and satellite altimetry improved the Atlantic forecasts by up to 3.5% through 72 h for those storms west of 50°W.

547 citations

Journal ArticleDOI
TL;DR: In this paper, the authors identify priorities for research in this area: (1) develop model host-microbiome systems for crop plants and non-crop plants with associated microbial culture collections and reference genomes, (2) define core microbiomes and metagenomes in these model systems, (3) elucidate the rules of synthetic, functionally programmable microbiome assembly, and (4) determine functional mechanisms of plant microbiome interactions.
Abstract: Feeding a growing world population amidst climate change requires optimizing the reliability, resource use, and environmental impacts of food production. One way to assist in achieving these goals is to integrate beneficial plant microbiomes-i.e., those enhancing plant growth, nutrient use efficiency, abiotic stress tolerance, and disease resistance-into agricultural production. This integration will require a large-scale effort among academic researchers, industry researchers, and farmers to understand and manage plant-microbiome interactions in the context of modern agricultural systems. Here, we identify priorities for research in this area: (1) develop model host-microbiome systems for crop plants and non-crop plants with associated microbial culture collections and reference genomes, (2) define core microbiomes and metagenomes in these model systems, (3) elucidate the rules of synthetic, functionally programmable microbiome assembly, (4) determine functional mechanisms of plant-microbiome interactions, and (5) characterize and refine plant genotype-by-environment-by-microbiome-by-management interactions. Meeting these goals should accelerate our ability to design and implement effective agricultural microbiome manipulations and management strategies, which, in turn, will pay dividends for both the consumers and producers of the world food supply.

547 citations


Authors

Showing all 31766 results

NameH-indexPapersCitations
Mark P. Mattson200980138033
Stephen J. O'Brien153106293025
Ad Bax13848697112
David Price138168793535
Georgios B. Giannakis137132173517
James Mueller134119487738
Christopher B. Field13340888930
Steven W. Running12635576265
Simon Lin12675469084
Jitender P. Dubey124134477275
Gregory P. Asner12361360547
Steven P. DenBaars118136660343
Peter Molnar11844653480
William R. Jacobs11849048638
C. Patrignani1171754110008
Network Information
Related Institutions (5)
University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

94% related

University of California, Davis
180K papers, 8M citations

94% related

Pennsylvania State University
196.8K papers, 8.3M citations

94% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

93% related

Cornell University
235.5K papers, 12.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023159
2022500
20213,596
20203,492
20193,340
20183,136