scispace - formally typeset
Search or ask a question
Institution

Colorado State University

EducationFort Collins, Colorado, United States
About: Colorado State University is a education organization based out in Fort Collins, Colorado, United States. It is known for research contribution in the topics: Population & Laser. The organization has 31430 authors who have published 69040 publications receiving 2724463 citations. The organization is also known as: CSU & Colorado Agricultural College.
Topics: Population, Laser, Radar, Poison control, Soil water


Papers
More filters
Journal ArticleDOI
TL;DR: Simultaneous measurements of the concentration and composition of tropospheric aerosol particles capable of initiating ice in cold (cirrus) clouds are reported, suggesting a predominant potential impact of these nuclei on cirrus formed by slow, large-scale lifting or small cooling rates, including subvisual cirrus.
Abstract: This article addresses the need for new data on indirect effects of natural and anthropogenic aerosol particles on atmospheric ice clouds. Simultaneous measurements of the concentration and composition of tropospheric aerosol particles capable of initiating ice in cold (cirrus) clouds are reported. Measurements support that cirrus formation occurs both by heterogeneous nucleation by insoluble particles and homogeneous (spontaneous) freezing of particles containing solutions. Heterogeneous ice nuclei concentrations in the cirrus regime depend on temperature, relative humidity, and the concentrations and physical and chemical properties of aerosol particles. The cirrus-active concentrations of heterogeneous nuclei measured in November over the western U.S. were <0.03 cm–3. Considering previous modeling studies, this result suggests a predominant potential impact of these nuclei on cirrus formed by slow, large-scale lifting or small cooling rates, including subvisual cirrus. The most common heterogeneous ice nuclei were identified as relatively pure mineral dusts and metallic particles, some of which may have origin through anthropogenic processes. Homogeneous freezing of large numbers of particles was detected above a critical relative humidity along with a simultaneous transition in nuclei composition toward that of the sulfate-dominated total aerosol population. The temperature and humidity conditions of the homogeneous nucleation transition were reasonably consistent with expectations based on previous theoretical and laboratory studies but were highly variable. The strong presence of certain organic pollutants was particularly noted to be associated with impedance of homogeneous freezing.

534 citations

Journal ArticleDOI
01 Sep 1988-Nature
TL;DR: In this paper, the authors found that riverine invertebrates were collected in hundreds per sample within a grid of shallow (10 m) wells located on the flood-plain up to 2 km from the channel of the Flathead River, Montana, USA.
Abstract: Contemporary river ecology is based primarily on biogeochemical studies of the river channel and interactions with shoreline vegetation, even though most rivers have extensive floodplain aquifers that are hydraulically connected to the channel. The hyporheic zone, the interstitial habitat penetrated by riverine animals, is characterized as being spatially limited to no more than a few metres, in most cases centimetres, away from the river channel1–9. However, riverine invertebrates were collected in hundreds per sample within a grid of shallow (10 m) wells located on the flood-plain up to 2 km from the channel of the Flathead River, Montana, USA. Preliminary mass transport calculations indicate that nutrients discharged from the hyporheic zone may be crucial to biotic productivity in the river channel. The strength and spatial magnitude of these interactions demonstrate an unexplored dimension in the ecology of gravel-bed rivers.

533 citations

Journal ArticleDOI
TL;DR: A systematic and standardised review of the scientific literature published from 1990 to 2013 on the effects of anthropogenic noise on wildlife, including both terrestrial and aquatic studies shows that terrestrial wildlife responses begin at noise levels of approximately 40’dBA, and 20% of papers documented impacts below 50 dBA.
Abstract: Global increases in environmental noise levels – arising from expansion of human populations, transportation networks, and resource extraction – have catalysed a recent surge of research into the effects of noise on wildlife. Synthesising a coherent understanding of the biological consequences of noise from this literature is challenging. Taxonomic groups vary in auditory capabilities. A wide range of noise sources and exposure levels occur, and many kinds of biological responses have been observed, ranging from individual behaviours to changes in ecological communities. Also, noise is one of several environmental effects generated by human activities, so researchers must contend with potentially confounding explanations for biological responses. Nonetheless, it is clear that noise presents diverse threats to species and ecosystems and salient patterns are emerging to help inform future natural resource-management decisions. We conducted a systematic and standardised review of the scientific literature published from 1990 to 2013 on the effects of anthropogenic noise on wildlife, including both terrestrial and aquatic studies. Research to date has concentrated predominantly on European and North American species that rely on vocal communication, with approximately two-thirds of the data set focussing on songbirds and marine mammals. The majority of studies documented effects from noise, including altered vocal behaviour to mitigate masking, reduced abundance in noisy habitats, changes in vigilance and foraging behaviour, and impacts on individual fitness and the structure of ecological communities. This literature survey shows that terrestrial wildlife responses begin at noise levels of approximately 40 dBA, and 20% of papers documented impacts below 50 dBA. Our analysis highlights the utility of existing scientific information concerning the effects of anthropogenic noise on wildlife for predicting potential outcomes of noise exposure and implementing meaningful mitigation measures. Future research directions that would support more comprehensive predictions regarding the magnitude and severity of noise impacts include: broadening taxonomic and geographical scope, exploring interacting stressors, conducting larger-scale studies, testing mitigation approaches, standardising reporting of acoustic metrics, and assessing the biological response to noise-source removal or mitigation. The broad volume of existing information concerning the effects of anthropogenic noise on wildlife offers a valuable resource to assist scientists, industry, and natural-resource managers in predicting potential outcomes of noise exposure.

531 citations

Journal ArticleDOI
TL;DR: In this article, the authors summarized collective experience from five continents in managing reservoir sediments and mitigating downstream sediment starvation, and recommended that these sediment management approaches be utilized where possible to sustain reservoir capacity and minimize environmental impacts of dams.
Abstract: By trapping sediment in reservoirs, dams interrupt the continuity of sediment transport through rivers, resulting in loss of reservoir storage and reduced usable life, and depriving downstream reaches of sediments essential for channel form and aquatic habitats. With the acceleration of new dam construction globally, these impacts are increasingly widespread. There are proven techniques to pass sediment through or around reservoirs, to preserve reservoir capacity and to minimize downstream impacts, but they are not applied in many situations where they would be effective. This paper summarizes collective experience from five continents in managing reservoir sediments and mitigating downstream sediment starvation. Where geometry is favorable it is often possible to bypass sediment around the reservoir, which avoids reservoir sedimentation and supplies sediment to downstream reaches with rates and timing similar to pre-dam conditions. Sluicing (or drawdown routing) permits sediment to be transported through the reservoir rapidly to avoid sedimentation during high flows; it requires relatively large capacity outlets. Drawdown flushing involves scouring and re-suspending sediment deposited in the reservoir and transporting it downstream through low-level gates in the dam; it works best in narrow reservoirs with steep longitudinal gradients and with flow velocities maintained above the threshold to transport sediment. Turbidity currents can often be vented through the dam, with the advantage that the reservoir need not be drawn down to pass sediment. In planning dams, we recommend that these sediment management approaches be utilized where possible to sustain reservoir capacity and minimize environmental impacts of dams.

531 citations

Journal ArticleDOI
06 Aug 2013-PLOS ONE
TL;DR: Stool profiling was used to identify intestinal bacteria and metabolites that are differentially represented in humans with colorectal cancer (CRC) compared to healthy controls to identify how microbial functions may influence CRC development.
Abstract: In this study we used stool profiling to identify intestinal bacteria and metabolites that are differentially represented in humans with colorectal cancer (CRC) compared to healthy controls to identify how microbial functions may influence CRC development. Stool samples were collected from healthy adults (n = 10) and colorectal cancer patients (n = 11) prior to colon resection surgery at the University of Colorado Health-Poudre Valley Hospital in Fort Collins, CO. The V4 region of the 16s rRNA gene was pyrosequenced and both short chain fatty acids and global stool metabolites were extracted and analyzed utilizing Gas Chromatography-Mass Spectrometry (GC-MS). There were no significant differences in the overall microbial community structure associated with the disease state, but several bacterial genera, particularly butyrate-producing species, were under-represented in the CRC samples, while a mucin-degrading species, Akkermansia muciniphila, was about 4-fold higher in CRC (p<0.01). Proportionately higher amounts of butyrate were seen in stool of healthy individuals while relative concentrations of acetate were higher in stools of CRC patients. GC-MS profiling revealed higher concentrations of amino acids in stool samples from CRC patients and higher poly and monounsaturated fatty acids and ursodeoxycholic acid, a conjugated bile acid in stool samples from healthy adults (p<0.01). Correlative analysis between the combined datasets revealed some potential relationships between stool metabolites and certain bacterial species. These associations could provide insight into microbial functions occurring in a cancer environment and will help direct future mechanistic studies. Using integrated “omics” approaches may prove a useful tool in identifying functional groups of gastrointestinal bacteria and their associated metabolites as novel therapeutic and chemopreventive targets.

531 citations


Authors

Showing all 31766 results

NameH-indexPapersCitations
Mark P. Mattson200980138033
Stephen J. O'Brien153106293025
Ad Bax13848697112
David Price138168793535
Georgios B. Giannakis137132173517
James Mueller134119487738
Christopher B. Field13340888930
Steven W. Running12635576265
Simon Lin12675469084
Jitender P. Dubey124134477275
Gregory P. Asner12361360547
Steven P. DenBaars118136660343
Peter Molnar11844653480
William R. Jacobs11849048638
C. Patrignani1171754110008
Network Information
Related Institutions (5)
University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

94% related

University of California, Davis
180K papers, 8M citations

94% related

Pennsylvania State University
196.8K papers, 8.3M citations

94% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

93% related

Cornell University
235.5K papers, 12.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023159
2022500
20213,596
20203,492
20193,340
20183,136