scispace - formally typeset
Search or ask a question
Institution

Colorado State University

EducationFort Collins, Colorado, United States
About: Colorado State University is a education organization based out in Fort Collins, Colorado, United States. It is known for research contribution in the topics: Population & Radar. The organization has 31430 authors who have published 69040 publications receiving 2724463 citations. The organization is also known as: CSU & Colorado Agricultural College.
Topics: Population, Radar, Poison control, Laser, Soil water


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors place what is presently known about this topic into a framework that emphasizes the intrapsychic and interpersonal functions of emotion, and conclude with some ideas on future directions for research, placing particular emphasis on a functionalist approach to the analysis of emotion-denoting terms.
Abstract: BRETHERTON, INGE; FRITZ, JANET; ZAHN-WAXLER, CAROLYN; and RIDGEWAY, DOREEN. Learning to Talk about Emotions: A Functionalist Perspective. CHILD DEVELOPMENT, 1986, 57, 529-548. Although the recent focus on functionalist theories of emotions has led to an upsurge of interest in many aspects of emotional development, not enough attention has been paid to young children's developing ability to talk about emotions. In this paper we attempt to place what is presently known about this topic into a framework that emphasizes the intrapsychic and interpersonal functions of emotion. We also consider suggestive evidence concerning the importance of the ability to talk about emotions in the conduct of interpersonal interaction. The paper concludes with some ideas on future directions for research, placing particular emphasis on a functionalist approach to the analysis of emotion-denoting terms.

394 citations

Journal ArticleDOI
TL;DR: It is proposed that miR398 is a key factor in copper homeostasis in plants and regulates the stability of mRNAs of major copper proteins under copper-limited conditions, which takes place in response to changes in a low range of copper levels.

394 citations

Journal ArticleDOI
TL;DR: It is reported that the ROP of γ-BL can, with a suitable catalyst, proceed smoothly to high conversions under ambient pressure to produce PγBL materials with a number-average molecular weight up to 30 kg mol(-1) and with controlled linear and/or cyclic topologies.
Abstract: Ring-opening polymerization (ROP) is a powerful synthetic methodology for the chemical synthesis of technologically important biodegradable aliphatic polyesters from cyclic esters or lactones. However, the bioderived five-membered γ-butyrolactone (γ-BL) is commonly referred as ‘non-polymerizable’ because of its low strain energy. The chemical synthesis of poly(γ-butyrolactone) (PγBL) through the ROP process has been realized only under ultrahigh pressure (20,000 atm, 160 °C) and only produces oligomers. Here we report that the ROP of γ-BL can, with a suitable catalyst, proceed smoothly to high conversions (90%) under ambient pressure to produce PγBL materials with a number-average molecular weight up to 30 kg mol–1 and with controlled linear and/or cyclic topologies. Remarkably, both linear and cyclic PγBLs can be recycled back into the monomer in quantitative yield by simply heating the bulk materials at 220 °C (linear polymer) or 300 °C (cyclic polymer) for one hour, which thereby demonstrates the complete recyclability of PγBL. Bio-derived γ-butyrolactone (γ-BL) is commonly referred to as ‘non-polymerizable’ due to its low strain energy. Now it has been shown that ring-opening polymerization of γ-BL can in fact proceed to high conversions under ambient pressure with a suitable catalyst, producing high-molecular-weight polymers with controlled topologies and complete recyclability.

394 citations

Journal ArticleDOI
TL;DR: In this paper, the interior of an aqueous reverse micelle is modeled as a rigid spherical cavity, treating only the surfactant head groups and water at a molecular level.
Abstract: Aqueous reverse micelles, which are surfactant aggregates in nonpolar solvents that enclose packets of aqueous solution, have been widely studied experimentally and theoretically, but much remains unknown about the properties of water in the interior. The few previous molecular dynamics simulations of reverse micelles have not examined how the micelle size affects these properties. We have modeled the interior of an aqueous reverse micelle as a rigid spherical cavity, treating only the surfactant headgroups and water at a molecular level. Interactions between the interior molecules and the cavity are represented by a simple continuum potential. The basic parameters of the modelmicelle size, surface ion density, and water contentare based on experimental measurements of Aerosol OT reverse micelles but could be chosen to match other surfactant systems as well. The surfactant head is modeled as a pair of atomic ions: a large headgroup ion fixed at the cavity surface and a mobile counterion. The SPC/E model ...

393 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a simple and unified framework to estimate the return period and risk for nonstationary hydrologic events along with examples and applications so that it can be accessible to a broad audience in the field.
Abstract: Current practice using probabilistic methods applied for designing hydraulic structures generally assume that extreme events are stationary. However, many studies in the past decades have shown that hydrological records exhibit some type of nonstationarity such as trends and shifts. Human intervention in river basins (e.g., urbanization), the effect of low-frequency climatic variability (e.g., Pacific Decadal Oscillation), and climate change due to increased greenhouse gasses in the atmosphere have been suggested to be the leading causes of changes in the hydrologic cycle of river basins in addition to changes in the magnitude and frequency of extreme floods and extreme sea levels. To tackle nonstationarity in hydrologic extremes, several approaches have been proposed in the literature such as frequency analysis, in which the parameters of a given model vary in accordance with time. The aim of this paper is to show that some basic concepts and methods used in designing flood-related hydraulic structures assuming a stationary world can be extended into a nonstationary frame- work. In particular, the concepts of return period and risk are formulated by extending the geometric distribution to allow for changing exceeding probabilities over time. Building on previous developments suggested in the statistical and climate change literature, the writers present a simple and unified framework to estimate the return period and risk for nonstationary hydrologic events along with examples and applications so that it can be accessible to a broad audience in the field. The applications demonstrate that the return period and risk estimates for nonstationary situations can be quite different than those corresponding to stationary conditions. They also suggest that the nonstationary analysis can be helpful in making an appropriate assessment of the risk of a hydraulic structure during the planned project-life. DOI: 10.1061/ (ASCE)HE.1943-5584.0000820. © 2014 American Society of Civil Engineers.

393 citations


Authors

Showing all 31766 results

NameH-indexPapersCitations
Mark P. Mattson200980138033
Stephen J. O'Brien153106293025
Ad Bax13848697112
David Price138168793535
Georgios B. Giannakis137132173517
James Mueller134119487738
Christopher B. Field13340888930
Steven W. Running12635576265
Simon Lin12675469084
Jitender P. Dubey124134477275
Gregory P. Asner12361360547
Steven P. DenBaars118136660343
Peter Molnar11844653480
William R. Jacobs11849048638
C. Patrignani1171754110008
Network Information
Related Institutions (5)
University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

94% related

University of California, Davis
180K papers, 8M citations

94% related

Pennsylvania State University
196.8K papers, 8.3M citations

94% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

93% related

Cornell University
235.5K papers, 12.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023159
2022500
20213,596
20203,492
20193,340
20183,136