scispace - formally typeset
Search or ask a question
Institution

Colorado State University

EducationFort Collins, Colorado, United States
About: Colorado State University is a education organization based out in Fort Collins, Colorado, United States. It is known for research contribution in the topics: Population & Radar. The organization has 31430 authors who have published 69040 publications receiving 2724463 citations. The organization is also known as: CSU & Colorado Agricultural College.
Topics: Population, Radar, Poison control, Laser, Soil water


Papers
More filters
Journal ArticleDOI
TL;DR: The utility of RNA-Seq to identify disease-associated ncRNAs that may improve the stratification of cancer subtypes is established and it is suggested that PCAT-1 is a transcriptional repressor implicated in a subset of prostate cancer patients.
Abstract: Noncoding RNAs (ncRNAs) are emerging as key molecules in human cancer, with the potential to serve as novel markers of disease and to reveal uncharacterized aspects of tumor biology. Here we discover 121 unannotated prostate cancer-associated ncRNA transcripts (PCATs) by ab initio assembly of high-throughput sequencing of polyA(+) RNA (RNA-Seq) from a cohort of 102 prostate tissues and cells lines. We characterized one ncRNA, PCAT-1, as a prostate-specific regulator of cell proliferation and show that it is a target of the Polycomb Repressive Complex 2 (PRC2). We further found that patterns of PCAT-1 and PRC2 expression stratified patient tissues into molecular subtypes distinguished by expression signatures of PCAT-1-repressed target genes. Taken together, our findings suggest that PCAT-1 is a transcriptional repressor implicated in a subset of prostate cancer patients. These findings establish the utility of RNA-Seq to identify disease-associated ncRNAs that may improve the stratification of cancer subtypes.

953 citations

Journal ArticleDOI
08 Aug 2002-Nature
TL;DR: A clear negative relationship between precipitation and changes in soil organic carbon and nitrogen content when grasslands were invaded by woody vegetation is found, with drier sites gaining, and wetter sites losing, soilorganic carbon.
Abstract: The invasion of woody vegetation into deserts, grasslands and savannas is generally thought to lead to an increase in the amount of carbon stored in those ecosystems. For this reason, shrub and forest expansion (for example, into grasslands) is also suggested to be a substantial, if uncertain, component of the terrestrial carbon sink1,2,3,4,5,6,7,8,9,10,11,12,13,14. Here we investigate woody plant invasion along a precipitation gradient (200 to 1,100 mm yr-1) by comparing carbon and nitrogen budgets and soil δ13C profiles between six pairs of adjacent grasslands, in which one of each pair was invaded by woody species 30 to 100 years ago. We found a clear negative relationship between precipitation and changes in soil organic carbon and nitrogen content when grasslands were invaded by woody vegetation, with drier sites gaining, and wetter sites losing, soil organic carbon. Losses of soil organic carbon at the wetter sites were substantial enough to offset increases in plant biomass carbon, suggesting that current land-based assessments may overestimate carbon sinks. Assessments relying on carbon stored from woody plant invasions to balance emissions may therefore be incorrect.

952 citations

Journal ArticleDOI
29 Jun 2018-Science
TL;DR: In this paper, the authors examine barriers and opportunities associated with these difficult-to-decarbonize services and processes, including possible technological solutions and research and development priorities, and examine the use of existing technologies to meet future demands for these services without net addition of CO2 to the atmosphere.
Abstract: Some energy services and industrial processes-such as long-distance freight transport, air travel, highly reliable electricity, and steel and cement manufacturing-are particularly difficult to provide without adding carbon dioxide (CO2) to the atmosphere. Rapidly growing demand for these services, combined with long lead times for technology development and long lifetimes of energy infrastructure, make decarbonization of these services both essential and urgent. We examine barriers and opportunities associated with these difficult-to-decarbonize services and processes, including possible technological solutions and research and development priorities. A range of existing technologies could meet future demands for these services and processes without net addition of CO2 to the atmosphere, but their use may depend on a combination of cost reductions via research and innovation, as well as coordinated deployment and integration of operations across currently discrete energy industries.

951 citations

Journal ArticleDOI
TL;DR: Three hard winter wheat varieties were examined and compared for their free radical scavenging properties and total phenolic contents (TPC) and ESR results confirmed that wheat extracts directly reacted with and quenched free radicals.
Abstract: Three hard winter wheat varieties (Akron, Trego, and Platte) were examined and compared for their free radical scavenging properties and total phenolic contents (TPC) Free radical scavenging properties of wheat grain extracts were evaluated by spectrophotometric and electron spin resonance (ESR) spectrometry methods against stable 2,2-diphenyl-1-picryhydrazyl radical (DPPH*) and radical cation ABTS*+ (2,2'-azino-di[3-ethylbenzthiazoline sulfonate]) The results showed that the three wheat extracts differed in their capacities to quench or inhibit DPPH* and ABTS*+ Akron showed the greatest activity to quench DPPH radicals, while Platte had the highest capacity against ABTS*+ The ED50 values of wheat extracts against DPPH radicals were 060 mg/mL for Akron, 71 mg/mL for Trego, and 095 mg/mL for Platte under the experimental conditions The trolox equivalents against ABTS*+ were 131 +/- 044, 108 +/- 005, and 191 +/- 006 micromol/g of grain for Akron, Trego, and Platte wheat, respectively ESR results confirmed that wheat extracts directly reacted with and quenched free radicals The TPC were 4879 +/- 9278 microg gallic acid equivalents/g of grain No correlation was observed between TPC and radical scavenging capacities for DPPH* and ABTS*+ (p = 015 and p > 05, respectively)

946 citations

Journal ArticleDOI
TL;DR: In this paper, the influence of place attachment and place identity on environmentally responsible behavior was examined using a structural equation model, and it was shown that place identity mediated the relationship between place dependence and responsible behavior.
Abstract: This article illustrates how an attachment to a local natural resource can influence environmentally responsible behavior (ERB) in an individual's everyday life. Our study showed that 4 general (e.g., talking with others about environmental issues) and 3 specific (e.g., sorting recyclable trash) behavioral indicators reflected a single environmentally responsible latent construct. Following previous research, we operationalized place attachment using 2 concepts: (a) place dependence (i.e., a functional attachment) and (b) place identity (i.e., an emotional attachment). The influence of these two concepts on ERB was examined using a structural equation model. Data for this analysis were obtained from a survey of youth, 14-17 years of age (N = 182), who participated in local natural resource work programs. Results supported the predicted relationships. As hypothesized, place identity mediated the relationship between place dependence and responsible behavior. Place dependence influenced place ident...

943 citations


Authors

Showing all 31766 results

NameH-indexPapersCitations
Mark P. Mattson200980138033
Stephen J. O'Brien153106293025
Ad Bax13848697112
David Price138168793535
Georgios B. Giannakis137132173517
James Mueller134119487738
Christopher B. Field13340888930
Steven W. Running12635576265
Simon Lin12675469084
Jitender P. Dubey124134477275
Gregory P. Asner12361360547
Steven P. DenBaars118136660343
Peter Molnar11844653480
William R. Jacobs11849048638
C. Patrignani1171754110008
Network Information
Related Institutions (5)
University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

94% related

University of California, Davis
180K papers, 8M citations

94% related

Pennsylvania State University
196.8K papers, 8.3M citations

94% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

93% related

Cornell University
235.5K papers, 12.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023159
2022500
20213,596
20203,492
20193,340
20183,136