scispace - formally typeset
Search or ask a question
Institution

Colorado State University

EducationFort Collins, Colorado, United States
About: Colorado State University is a education organization based out in Fort Collins, Colorado, United States. It is known for research contribution in the topics: Population & Radar. The organization has 31430 authors who have published 69040 publications receiving 2724463 citations. The organization is also known as: CSU & Colorado Agricultural College.
Topics: Population, Radar, Poison control, Laser, Soil water


Papers
More filters
Journal ArticleDOI
TL;DR: Constraint caused by vegetation structure is the reason why regional ANPP-precipitation models have a steeper slope than long-term models and point out a weakness of exchanging space for time in predicting production patterns.
Abstract: We evaluated the relationship between annual forage production and annual and seasonal precipitation and temperature at a shortgrass steppe site in north-central Colorado using a long-term data set (52 yr). We also constructed a relationship between forage production and aboveground net primary production (ANPP). Precipitation fluctuated randomly, but temperature had clear warming and cooling trends including a 17-yr warming trend from 1974 to 1990. Forage production was significantly related to both annual and seasonal precipitation but not temperature. Precipitation events between 15 and 30 mm accounted for most of the variability in production because they accounted for most of the variability in precipitation and because they wetted the soil layers that have the largest effect on production. Forage production amplified variability in annual precipitation. Production showed time lags of several years in responding to increases in precipitation. Change in vegetation structure has a characteristic response time, which contrains production responses in wet years. Constraint caused by vegetation structure is the reason why regional ANPP-precipitation models have a steeper slope than long-term models and point out a weakness of exchanging space for time in predicting production patterns.

644 citations

Journal ArticleDOI
TL;DR: The DAYCENT biogeochemistry model was used to assess soil GHG fluxes and biomass yields for corn, soybean, alfalfa, hybrid poplar, reed canarygrass, and switchgrass as bioenergy crops in Pennsylvania, USA to determine the net effect of several bioenergy cropping systems on greenhouse-gas (GHG) emissions.
Abstract: Bioenergy cropping systems could help offset greenhouse gas emissions, but quantifying that offset is complex. Bioenergy crops offset carbon dioxide emissions by converting atmospheric CO2 to organic C in crop biomass and soil, but they also emit nitrous oxide and vary in their effects on soil oxidation of methane. Growing the crops requires energy (e.g., to operate farm machinery, produce inputs such as fertilizer) and so does converting the harvested product to usable fuels (feedstock conversion efficiency). The objective of this study was to quantify all these factors to determine the net effect of several bioenergy cropping systems on greenhouse-gas (GHG) emissions. We used the DAYCENT biogeochemistry model to assess soil GHG fluxes and biomass yields for corn, soybean, alfalfa, hybrid poplar, reed canarygrass, and switchgrass as bioenergy crops in Pennsylvania, USA. DAYCENT results were combined with estimates of fossil fuels used to provide farm inputs and operate agricultural machinery and fossil-fuel offsets from biomass yields to calculate net GHG fluxes for each cropping system considered. Displaced fossil fuel was the largest GHG sink, followed by soil carbon sequestration. N2O emissions were the largest GHG source. All cropping systems considered provided net GHG sinks, even when soil C was assumed to reach a new steady state and C sequestration in soil was not counted. Hybrid poplar and switchgrass provided the largest net GHG sinks, .200 g CO2e-Cm � 2 � yr � 1 for biomass conversion to ethanol, and .400 g CO2e-Cm � 2 � yr � 1 for biomass gasification for electricity generation. Compared with the life cycle of gasoline and diesel, ethanol and biodiesel from corn rotations reduced GHG emissions by ;40%, reed canarygrass by ;85%, and switchgrass and hybrid poplar by ;115%.

643 citations

Journal ArticleDOI
TL;DR: Results indicate that immunization with DNA encoding a mycobacterial antigen provides an efficient and simple method for generating protective immunity and that this technique may be useful for defining the protective antigens of M. tuberculosis, leading to the development of a more effective vaccine.
Abstract: Tuberculosis is the most widespread and lethal infectious disease affecting humans. Immunization of mice with plasmid DNA constructs encoding one of the secreted components of Mycobacterium tuberculosis, antigen 85 (Ag85), induced substantial humoral and cell-mediated immune responses and conferred significant protection against challenge with live M. tuberculosis and M. bovis bacille Calmette-Guerin (BCG). These results indicate that immunization with DNA encoding a mycobacterial antigen provides an efficient and simple method for generating protective immunity and that this technique may be useful for defining the protective antigens of M. tuberculosis, leading to the development of a more effective vaccine.

642 citations

Journal ArticleDOI
TL;DR: In this paper, an estimator of the number of change points in an independent normal sequence is proposed via Schwarz' criterion, and weak consistency of this estimator is established; however, it is not shown that the estimator can be used to estimate change points.

641 citations

Journal ArticleDOI
TL;DR: Improve methods for the rapid determination of cell number in monolayer cultures are improved by arriving at conditions of staining cell nuclei with crystal violet under fixed regimens which allow rapid and reproducible quantification of cellNumber in cultures grown in 24-well miniwells.

640 citations


Authors

Showing all 31766 results

NameH-indexPapersCitations
Mark P. Mattson200980138033
Stephen J. O'Brien153106293025
Ad Bax13848697112
David Price138168793535
Georgios B. Giannakis137132173517
James Mueller134119487738
Christopher B. Field13340888930
Steven W. Running12635576265
Simon Lin12675469084
Jitender P. Dubey124134477275
Gregory P. Asner12361360547
Steven P. DenBaars118136660343
Peter Molnar11844653480
William R. Jacobs11849048638
C. Patrignani1171754110008
Network Information
Related Institutions (5)
University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

94% related

University of California, Davis
180K papers, 8M citations

94% related

Pennsylvania State University
196.8K papers, 8.3M citations

94% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

93% related

Cornell University
235.5K papers, 12.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023159
2022500
20213,596
20203,492
20193,340
20183,136