scispace - formally typeset
Search or ask a question
Institution

Colorado State University

EducationFort Collins, Colorado, United States
About: Colorado State University is a education organization based out in Fort Collins, Colorado, United States. It is known for research contribution in the topics: Population & Radar. The organization has 31430 authors who have published 69040 publications receiving 2724463 citations. The organization is also known as: CSU & Colorado Agricultural College.
Topics: Population, Radar, Poison control, Laser, Soil water


Papers
More filters
Journal ArticleDOI
TL;DR: Faster RAS produced significant improvement in mean gait velocity, cadence, and stride length in all groups, and close synchronisation between rhythm and step frequency in the controls and both Parkinson's disease groups suggest evidence for rhythmic entrainment mechanisms even in the presence of basal ganglia dysfunction.
Abstract: OBJECTIVES: The effect of rhythmic auditory stimulation (RAS) on gait velocity, cadence, stride length, and symmetry was studied in 31 patients with idiopathic Parkinson's disease, 21 of them on (ON) and 10 off medication (OFF), and 10 healthy elderly subjects. METHOD: Patients walked under four conditions: (1) their own maximal speed without external rhythm; (2) with the RAS beat frequency matching the baseline cadence; (3) with RAS 10% faster than the baseline cadence; (4) without rhythm to check for carry over from RAS. Gait data were recorded via a computerised foot switch system. The RAS was delivered via a 50 ms square wave tone embedded in instrumental music (Renaissance style) in 2/4 metre prerecorded digitally on a sequencer for variable tempo reproduction. Patients on medication were tested in the morning 60-90 minutes after medication. Patients off medication were tested at the same time of day 24 hours after the last dose. Healthy elderly subjects were tested during the same time of day. RESULTS: Faster RAS produced significant improvement (P < 0.05) in mean gait velocity, cadence, and stride length in all groups. Close synchronisation between rhythm and step frequency in the controls and both Parkinson's disease groups suggest evidence for rhythmic entrainment mechanisms even in the presence of basal ganglia dysfunction. CONCLUSIONS: The results are consistent with and extend prior reports of rhythmic auditory facilitation in Parkinson's disease gait when there is mild to moderate impairment, and suggest a technique for gait rehabilitation in Parkinson's disease.

615 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined the emission factors used in estimating national N2O emissions; for example, 1.25% of fertiliser or animal-excreted N appearing as N 2O (IPCC 1996).
Abstract: Increases in the concentrations of greenhouse gases, carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and halocarbons in the atmosphere due to human activities are associated with global climate change. The concentration of N2O has increased by 16% since 1750. Although the atmospheric concentration of N2O is much smaller (314 ppb in 1998) than of CO2 (365 ppm), its global warming potential (cumulative radiative forcing) is 296 times that of the latter in a 100-year time horizon. Currently, it contributes about 6% of the overall global warming effect but its contribution from the agricultural sector is about 16%. Of that, almost 80% of N2O is emitted from Australian agricultural lands, originating from N fertilisers (32%), soil disturbance (38%), and animal waste (30%). Nitrous oxide is primarily produced in soil by the activities of microorganisms during nitrification, and denitrification processes. The ratio of N2O to N2 production depends on oxygen supply or water-filled pore space, decomposable organic carbon, N substrate supply, temperature, and pH and salinity. N2O production from soil is sporadic both in time and space, and therefore, it is a challenge to scale up the measurements of N2O emission from a given location and time to regional and national levels. Estimates of N2O emissions from various agricultural systems vary widely. For example, in flooded rice in the Riverina Plains, N2O emissions ranged from 0.02% to 1.4% of fertiliser N applied, whereas in irrigated sugarcane crops, 15.4% of fertiliser was lost over a 4-day period. Nitrous oxide emissions from fertilised dairy pasture soils in Victoria range from 6 to 11 kg N2O-N/ha, whereas in arable cereal cropping, N2O emissions range from <0.01% to 9.9% of N fertiliser applications. Nitrous oxide emissions from soil nitrite and nitrates resulting from residual fertiliser and legumes are rarely studied but probably exceed those from fertilisers, due to frequent wetting and drying cycles over a longer period and larger area. In ley cropping systems, significant N2O losses could occur, from the accumulation of mainly nitrate-N, following mineralisation of organic N from legume-based pastures. Extensive grazed pastures and rangelands contribute annually about 0.2 kg N/ha as N2O (93 kg/ha per year CO2-equivalent). Tropical savannas probably contribute an order of magnitude more, including that from frequent fires. Unfertilised forestry systems may emit less but the fertilised plantations emit more N2O than the extensive grazed pastures. However, currently there are limited data to quantify N2O losses in systems under ley cropping, tropical savannas, and forestry in Australia. Overall, there is a need to examine the emission factors used in estimating national N2O emissions; for example, 1.25% of fertiliser or animal-excreted N appearing as N2O (IPCC 1996). The primary consideration for mitigating N2O emissions from agricultural lands is to match the supply of mineral N (from fertiliser applications, legume-fixed N, organic matter, or manures) to its spatial and temporal needs by crops/pastures/trees. Thus, when appropriate, mineral N supply should be regulated through slow-release (urease and/or nitrification inhibitors, physical coatings, or high C/N ratio materials) or split fertiliser application. Also, N use could be maximised by balancing other nutrient supplies to plants. Moreover, non-legume cover crops could be used to take up residual mineral N following N-fertilised main crops or mineral N accumulated following legume leys. For manure management, the most effective practice is the early application and immediate incorporation of manure into soil to reduce direct N2O emissions as well as secondary emissions from deposition of ammonia volatilised from manure and urine. Current models such as DNDC and DAYCENT can be used to simulate N2O production from soil after parameterisation with the local data, and appropriate modification and verification against the measured N2O emissions under different management practices.

614 citations

Journal ArticleDOI
TL;DR: In this paper, the authors combined ICESat waveforms and ancillary topography from the Shuttle Radar Topography Mission to estimate maximum forest height in three ecosystems; tropical broadleaf forests in Brazil, temperate broad leaf forests in Tennessee, and temperate needleleaf trees in Oregon.
Abstract: Exchange of carbon between forests and the atmosphere is a vital component of the global carbon cycle. Satellite laser altimetry has a unique capability for estimating forest canopy height, which has a direct and increasingly well understood relationship to aboveground carbon storage. While the Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud and land Elevation Satellite (ICESat) has collected an unparalleled dataset of lidar waveforms over terrestrial targets, processing of ICESat data to estimate forest height is complicated by the pulse broadening associated with large-footprint, waveform-sampling lidar. We combined ICESat waveforms and ancillary topography from the Shuttle Radar Topography Mission to estimate maximum forest height in three ecosystems; tropical broadleaf forests in Brazil, temperate broadleaf forests in Tennessee, and temperate needleleaf forests in Oregon. Final models for each site explained between 59% and 68% of variance in field-measured forest canopy height (RMSE between 4.85 and 12.66 m). In addition, ICESat-derived heights for the Brazilian plots were correlated with field-estimates of aboveground biomass (r(2) = 73%, RMSE = 58.3 Mgha(-1)).

613 citations

Journal ArticleDOI
TL;DR: In this paper, a review of literature on model and field data is presented, and the empirical data are compared with theoretical considerations, together with a set of design suggestions together with possibilities for protection against scour.
Abstract: A “state of the art“ report on the subject of local scour around cylindrical piers is given here. After a description of the scouring process, a critical review of literature on model and field data is presented, and the empirical data are compared with theoretical considerations. The final result is a set of design suggestions together with possibilities for protection against scour.

608 citations


Authors

Showing all 31766 results

NameH-indexPapersCitations
Mark P. Mattson200980138033
Stephen J. O'Brien153106293025
Ad Bax13848697112
David Price138168793535
Georgios B. Giannakis137132173517
James Mueller134119487738
Christopher B. Field13340888930
Steven W. Running12635576265
Simon Lin12675469084
Jitender P. Dubey124134477275
Gregory P. Asner12361360547
Steven P. DenBaars118136660343
Peter Molnar11844653480
William R. Jacobs11849048638
C. Patrignani1171754110008
Network Information
Related Institutions (5)
University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

94% related

University of California, Davis
180K papers, 8M citations

94% related

Pennsylvania State University
196.8K papers, 8.3M citations

94% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

93% related

Cornell University
235.5K papers, 12.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023159
2022500
20213,596
20203,492
20193,340
20183,136