Institution
Commonwealth Scientific and Industrial Research Organisation
Government•Canberra, Australian Capital Territory, Australia•
About: Commonwealth Scientific and Industrial Research Organisation is a government organization based out in Canberra, Australian Capital Territory, Australia. It is known for research contribution in the topics: Population & Soil water. The organization has 33765 authors who have published 79910 publications receiving 3356114 citations.
Topics: Population, Soil water, Climate change, Gene, Coal
Papers published on a yearly basis
Papers
More filters
[...]
Stockholm University1, Stockholm Environment Institute2, Australian National University3, University of Alaska Fairbanks4, Université catholique de Louvain5, University of East Anglia6, Wageningen University and Research Centre7, Royal Swedish Academy of Sciences8, University of Oxford9, Potsdam Institute for Climate Impact Research10, James Cook University11, Arizona State University12, Royal Institute of Technology13, University of Minnesota14, University of Vermont15, Stockholm International Water Institute16, California State University San Marcos17, Goddard Institute for Space Studies18, Commonwealth Scientific and Industrial Research Organisation19, University of Arizona20, Max Planck Society21
TL;DR: Identifying and quantifying planetary boundaries that must not be transgressed could help prevent human activities from causing unacceptable environmental change, argue Johan Rockstrom and colleagues.
Abstract: Identifying and quantifying planetary boundaries that must not be transgressed could help prevent human activities from causing unacceptable environmental change, argue Johan Rockstrom and colleagues.
7,735 citations
[...]
University of Buenos Aires1, University of Alaska Fairbanks2, University of Chile3, University of California, Berkeley4, Environmental Defense Fund5, National Autonomous University of Mexico6, Technische Universität München7, New Mexico State University8, Duke University9, Arizona State University10, University of Notre Dame11, Stanford University12, Colorado State University13, Commonwealth Scientific and Industrial Research Organisation14
TL;DR: This study identified a ranking of the importance of drivers of change, aranking of the biomes with respect to expected changes, and the major sources of uncertainties in projections of future biodiversity change.
Abstract: Scenarios of changes in biodiversity for the year 2100 can now be developed based on scenarios of changes in atmospheric carbon dioxide, climate, vegetation, and land use and the known sensitivity of biodiversity to these changes. This study identified a ranking of the importance of drivers of change, a ranking of the biomes with respect to expected changes, and the major sources of uncertainties. For terrestrial ecosystems, land-use change probably will have the largest effect, followed by climate change, nitrogen deposition, biotic exchange, and elevated carbon dioxide concentration. For freshwater ecosystems, biotic exchange is much more important. Mediterranean climate and grassland ecosystems likely will experience the greatest proportional change in biodiversity because of the substantial influence of all drivers of biodiversity change. Northern temperate ecosystems are estimated to experience the least biodiversity change because major land-use change has already occurred. Plausible changes in biodiversity in other biomes depend on interactions among the causes of biodiversity change. These interactions represent one of the largest uncertainties in projections of future biodiversity change.
7,686 citations
[...]
University of Melbourne1, Stony Brook University2, City University of New York3, Princeton University4, University of Lausanne5, University of California, Berkeley6, University of Alaska Fairbanks7, National Institute of Water and Atmospheric Research8, Commonwealth Scientific and Industrial Research Organisation9, University of São Paulo10, University of Missouri11, Consejo Nacional de Ciencia y Tecnología12, University of Kansas13, Landcare Research14, AT&T15, McGill University16, James Cook University17, Swiss Federal Institute for Forest, Snow and Landscape Research18
TL;DR: This work compared 16 modelling methods over 226 species from 6 regions of the world, creating the most comprehensive set of model comparisons to date and found that presence-only data were effective for modelling species' distributions for many species and regions.
Abstract: Prediction of species' distributions is central to diverse applications in ecology, evolution and conservation science. There is increasing electronic access to vast sets of occurrence records in museums and herbaria, yet little effective guidance on how best to use this information in the context of numerous approaches for modelling distributions. To meet this need, we compared 16 modelling methods over 226 species from 6 regions of the world, creating the most comprehensive set of model comparisons to date. We used presence-only data to fit models, and independent presence-absence data to evaluate the predictions. Along with well-established modelling methods such as generalised additive models and GARP and BIOCLIM, we explored methods that either have been developed recently or have rarely been applied to modelling species' distributions. These include machine-learning methods and community models, both of which have features that may make them particularly well suited to noisy or sparse information, as is typical of species' occurrence data. Presence-only data were effective for modelling species' distributions for many species and regions. The novel methods consistently outperformed more established methods. The results of our analysis are promising for the use of data from museums and herbaria, especially as methods suited to the noise inherent in such data improve.
6,718 citations
[...]
TL;DR: Given their current scale, biotic invasions have taken their place alongside human-driven atmospheric and oceanic alterations as major agents of global change and left unchecked, they will influence these other forces in profound but still unpredictable ways.
Abstract: Biotic invaders are species that establish a new range in which they proliferate, spread, and persist to the detriment of the environment. They are the most important ecological outcomes from the unprecedented alterations in the distribution of the earth's biota brought about largely through human transport and commerce. In a world without borders, few if any areas remain sheltered from these im- migrations. The fate of immigrants is decidedly mixed. Few survive the hazards of chronic and stochastic forces, and only a small fraction become naturalized. In turn, some naturalized species do become invasive. There are several potential reasons why some immigrant species prosper: some escape from the constraints of their native predators or parasites; others are aided by human-caused disturbance that disrupts native communities. Ironically, many biotic invasions are apparently facilitated by cultivation and husbandry, unintentional actions that foster immigrant populations until they are self-perpetuating and uncontrollable. Whatever the cause, biotic invaders can in many cases inflict enormous environmental damage: (1) Animal invaders can cause extinctions of vulnerable native species through predation, grazing, competition, and habitat alteration. (2) Plant invaders can completely alter the fire regime, nutrient cycling, hydrology, and energy budgets in a native ecosystem and can greatly diminish the abundance or survival of native species. (3) In agriculture, the principal pests of temperate crops are nonindigenous, and the combined expenses of pest control and crop losses constitute an onerous "tax" on food, fiber, and forage production. (4) The global cost of virulent plant and animal diseases caused by parasites transported to new ranges and presented with susceptible new hosts is currently incalculable. Identifying future invaders and taking effective steps to prevent their dispersal and establishment con- stitutes an enormous challenge to both conservation and international commerce. Detection and management when exclusion fails have proved daunting for varied reasons: (1) Efforts to identify general attributes of future invaders have often been inconclusive. (2) Predicting susceptible locales for future invasions seems even more problematic, given the enormous differences in the rates of arrival among potential invaders. (3) Eradication of an established invader is rare, and control efforts vary enormously in their efficacy. Successful control, however, depends more on commitment and continuing diligence than on the efficacy of specific tools themselves. (4) Control of biotic invasions is most effective when it employs a long-term, ecosystem- wide strategy rather than a tactical approach focused on battling individual invaders. (5) Prevention of invasions is much less costly than post-entry control. Revamping national and international quarantine laws by adopting a "guilty until proven innocent" approach would be a productive first step. Failure to address the issue of biotic invasions could effectively result in severe global consequences, including wholesale loss of agricultural, forestry, and fishery resources in some regions, disruption of the ecological processes that supply natural services on which human enterprise depends, and the creation of homogeneous, impoverished ecosystems composed of cosmopolitan species. Given their current scale, biotic invasions have taken their place alongside human-driven atmospheric and oceanic alterations as major agents of global change. Left unchecked, they will influence these other forces in profound but still unpredictable ways.
5,846 citations
[...]
TL;DR: Recent studies show that a loss of resilience usually paves the way for a switch to an alternative state, which suggests that strategies for sustainable management of such ecosystems should focus on maintaining resilience.
Abstract: All ecosystems are exposed to gradual changes in climate, nutrient loading, habitat fragmentation or biotic exploitation. Nature is usually assumed to respond to gradual change in a smooth way. However, studies on lakes, coral reefs, oceans, forests and arid lands have shown that smooth change can be interrupted by sudden drastic switches to a contrasting state. Although diverse events can trigger such shifts, recent studies show that a loss of resilience usually paves the way for a switch to an alternative state. This suggests that strategies for sustainable management of such ecosystems should focus on maintaining resilience.
5,705 citations
Authors
Showing all 33765 results
Name | H-index | Papers | Citations |
---|---|---|---|
David R. Williams | 178 | 2034 | 138789 |
Mark E. Cooper | 158 | 1463 | 124887 |
Kevin J. Gaston | 150 | 750 | 85635 |
Liming Dai | 141 | 781 | 82937 |
John D. Potter | 137 | 795 | 75310 |
Lei Zhang | 135 | 2240 | 99365 |
Harold A. Mooney | 135 | 450 | 100404 |
Frederick M. Ausubel | 133 | 389 | 60365 |
Rajkumar Buyya | 133 | 1066 | 95164 |
Robert B. Jackson | 132 | 458 | 91332 |
Peter Hall | 132 | 1640 | 85019 |
Frank Caruso | 131 | 641 | 61748 |
Paul J. Crutzen | 130 | 461 | 80651 |
Andrew Y. Ng | 130 | 345 | 164995 |
Lei Zhang | 130 | 2312 | 86950 |