scispace - formally typeset
Search or ask a question
Institution

Commonwealth Scientific and Industrial Research Organisation

GovernmentCanberra, Australian Capital Territory, Australia
About: Commonwealth Scientific and Industrial Research Organisation is a government organization based out in Canberra, Australian Capital Territory, Australia. It is known for research contribution in the topics: Population & Soil water. The organization has 33765 authors who have published 79910 publications receiving 3356114 citations.
Topics: Population, Soil water, Climate change, Gene, Coal


Papers
More filters
Journal ArticleDOI
TL;DR: Calculation of PD for different population subsets shows that protection of populations at either of two extremes of the geographic range of the group can significantly increase the phylogenetic diversity that is protected.

4,085 citations

01 Jan 1999
TL;DR: In this paper, the authors focus on the biogeograpbic consequences of the creation of habitat islands of different sizes and have provided little of practical value to managers in the field of landscape management.
Abstract: . Abstract Research on fragmented ecosystems has focused mostly on the biogeograpbic consequences of the creation of habitat “islands” of different sizes and has provided little of practical value to managers. However, ecosystem fragmentation causes large changes in the physical environment as well as biogeograpbic changes. Fragmentation generally results in a landscape that consists of remnant areas of native vegetation surrounded by a matrix of agricultural or other developed land. As a result fluxes of radiation, momentum (La, wind), water, and nutrients across the landscape are altered significantly. These in turn can have important influences on biota within remnant areas, especially at or near the edge between the remnant and the surrounding matrix. The isolation of remnant areas by clearing also has important consequences for the biota. These consequences vary with the time since isolation distance from other remnants, and degree of connectivity with other remnants. The influences of physical and biogeographic changes are modified by the size, shape, and position in the landscape of individual remnant, with larger remnants being less adversely affected by the fragmentation process. The Dynamics of remnant areas are predominantly driven by factors arising in the surrounding landscape. Management of, and research on, fragmented ecosystems should be directed at understanding and controlling these external influences as much as at the biota of the remnants themselves. There is a strong need to develop an integrated approach to landscape management that places conservation reserves in the context of the overall landscape

3,869 citations

Book
01 Jan 1983
TL;DR: The Underwater Light Field: Concepts of hydrologic optics, Absorption of light within the aquatic medium, and photosynthesis as a function of the incident light.
Abstract: Preface to the third edition Part I. The Underwater Light Field: 1. Concepts of hydrologic optics 2. Incident solar radiation 3. Absorption of light within the aquatic medium 4. Scattering of light within the aquatic medium 5. Characterizing the underwater light field 6. The nature of the underwater light field 7. Remote sensing of the aquatic environment Part II. Photosynthesis in the Aquatic Environment: 8. The photosynthetic apparatus of aquatic plants 9. Light capture by aquatic plants 10. Photosynthesis as a function of the incident light 11. Photosynthesis in the aquatic environment 12. Ecological strategies References and author index Index to symbols Index to organisms Index to water bodies Subject index.

3,856 citations

Journal ArticleDOI
TL;DR: In this article, the authors focus on the biogeograpbic consequences of the creation of habitat islands of different sizes and have provided little of practical value to managers in the field of landscape management.
Abstract: . Abstract Research on fragmented ecosystems has focused mostly on the biogeograpbic consequences of the creation of habitat “islands” of different sizes and has provided little of practical value to managers. However, ecosystem fragmentation causes large changes in the physical environment as well as biogeograpbic changes. Fragmentation generally results in a landscape that consists of remnant areas of native vegetation surrounded by a matrix of agricultural or other developed land. As a result fluxes of radiation, momentum (La, wind), water, and nutrients across the landscape are altered significantly. These in turn can have important influences on biota within remnant areas, especially at or near the edge between the remnant and the surrounding matrix. The isolation of remnant areas by clearing also has important consequences for the biota. These consequences vary with the time since isolation distance from other remnants, and degree of connectivity with other remnants. The influences of physical and biogeographic changes are modified by the size, shape, and position in the landscape of individual remnant, with larger remnants being less adversely affected by the fragmentation process. The Dynamics of remnant areas are predominantly driven by factors arising in the surrounding landscape. Management of, and research on, fragmented ecosystems should be directed at understanding and controlling these external influences as much as at the biota of the remnants themselves. There is a strong need to develop an integrated approach to landscape management that places conservation reserves in the context of the overall landscape

3,715 citations

Journal ArticleDOI
TL;DR: Supercapacitors are able to store and deliver energy at relatively high rates (beyond those accessible with batteries) because the mechanism of energy storage is simple charge-separation (as in conventional capacitors) as discussed by the authors.

3,620 citations


Authors

Showing all 33864 results

NameH-indexPapersCitations
David R. Williams1782034138789
Mark E. Cooper1581463124887
Kevin J. Gaston15075085635
Liming Dai14178182937
John D. Potter13779575310
Lei Zhang135224099365
Harold A. Mooney135450100404
Frederick M. Ausubel13338960365
Rajkumar Buyya133106695164
Robert B. Jackson13245891332
Peter Hall132164085019
Frank Caruso13164161748
Paul J. Crutzen13046180651
Andrew Y. Ng130345164995
Lei Zhang130231286950
Network Information
Related Institutions (5)
University of Queensland
155.7K papers, 5.7M citations

93% related

University of Melbourne
174.8K papers, 6.3M citations

91% related

Spanish National Research Council
220.4K papers, 7.6M citations

90% related

University of Sydney
187.3K papers, 6.1M citations

90% related

Texas A&M University
164.3K papers, 5.7M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202357
2022223
20213,358
20203,613
20193,600
20183,262