scispace - formally typeset
Search or ask a question
Institution

Cooperative Research Centre

About: Cooperative Research Centre is a based out in . It is known for research contribution in the topics: Population & Sea ice. The organization has 7633 authors who have published 8607 publications receiving 429721 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors focus on the use of paired catchment studies for determining the changes in water yield at various time scales resulting from permanent changes in vegetation and highlight the potential underestimation of water yield changes if regrowth experiments are used to predict the likely impact of permanent alterations to a catchment's vegetation.

1,384 citations

Journal ArticleDOI
TL;DR: In this article, the authors extend the reconstruction of global mean sea level back to 1870 and find a sea level rise from January 1870 to December 2004 of 195 mm, a 20th century rate of sea-level rise of 1.7 ± 0.3 mm yr−1 and a significant acceleration of sealevel rise from 0.013 − 0.006 mm yr −2.
Abstract: [1] Multi-century sea-level records and climate models indicate an acceleration of sea-level rise, but no 20th century acceleration has previously been detected. A reconstruction of global sea level using tide-gauge data from 1950 to 2000 indicates a larger rate of rise after 1993 and other periods of rapid sea-level rise but no significant acceleration over this period. Here, we extend the reconstruction of global mean sea level back to 1870 and find a sea-level rise from January 1870 to December 2004 of 195 mm, a 20th century rate of sea-level rise of 1.7 ± 0.3 mm yr−1 and a significant acceleration of sea-level rise of 0.013 ± 0.006 mm yr−2. This acceleration is an important confirmation of climate change simulations which show an acceleration not previously observed. If this acceleration remained constant then the 1990 to 2100 rise would range from 280 to 340 mm, consistent with projections in the IPCC TAR.

1,327 citations

Journal ArticleDOI
TL;DR: The effects of lime, fertilizer and manure applications on soil organic matter status and soil physical properties are of importance to agricultural sustainability as mentioned in this paper, and there is a need to study these relationships on existing long-term liming trials.
Abstract: The effects of lime, fertilizer and manure applications on soil organic matter status and soil physical properties are of importance to agricultural sustainability. Their effects are complex and many interactions can occur. In the short-term, liming can result in dispersion of clay colloids and formation of surface crusts. As pH is increased the surface negative charge on clay colloids increases and repulsive forces between particles dominate. However, at higher lime rates, Ca2+ concentrations and ionic strength in soil solution increase causing compression of the electrical double layer and renewed flocculation. When present in sufficient quantities, both lime and hydroxy-Al polymers formed by precipitation of exchangeable Al, can act as cementing agents bonding soil particles together and improving soil structure. Liming often causes a temporary flush of soil microbial activity but the effect of this on soil aggregation is unclear. It is suggested that, in the long-term, liming will increase crop yields, organic matter returns, soil organic matter content and thus soil aggregation. There is a need to study these relationships on existing long-term liming trials. Fertilizers are applied to soils in order to maintain or improve crop yields. In the long-term, increased crop yields and organic matter returns with regular fertilizer applications result in a higher soil organic matter content and biological activity being attained than where no fertilizers are applied. As a result, long-term fertilizer applications have been reported, in a number of cases, to cause increases in water stable aggregation, porosity, infiltration capacity and hydraulic conductivity and decreases in bulk density. Fertilizer additions can also have physico-chemical effects which influence soil aggregation. Phosphatic fertilizers and phosphoric acid can favour aggregation by the formation of Al or Ca phosphate binding agents whilst where fertilizer NH4 + accumulates in the soil at high concentrations, dispersion of clay colloids can be favoured. Additions of organic manures result in increased soil organic matter content. Many reports have shown that this results in increased water holding capacity, porosity, infiltration capacity, hydraulic conductivity and water stable aggregation and decreased bulk density and surface crusting. Problems associated with large applications of manure include dispersion caused by accumulated K+, Na+ and NH4 + in the soil and production of water-repellant substances by decomposer fungi.

1,278 citations

Journal ArticleDOI
Stephen Richards1, Richard A. Gibbs1, Nicole M. Gerardo2, Nancy A. Moran3  +220 moreInstitutions (58)
TL;DR: The genome of the pea aphid shows remarkable levels of gene duplication and equally remarkable gene absences that shed light on aspects of aphid biology, most especially its symbiosis with Buchnera.
Abstract: Aphids are important agricultural pests and also biological models for studies of insect-plant interactions, symbiosis, virus vectoring, and the developmental causes of extreme phenotypic plasticity. Here we present the 464 Mb draft genome assembly of the pea aphid Acyrthosiphon pisum. This first published whole genome sequence of a basal hemimetabolous insect provides an outgroup to the multiple published genomes of holometabolous insects. Pea aphids are host-plant specialists, they can reproduce both sexually and asexually, and they have coevolved with an obligate bacterial symbiont. Here we highlight findings from whole genome analysis that may be related to these unusual biological features. These findings include discovery of extensive gene duplication in more than 2000 gene families as well as loss of evolutionarily conserved genes. Gene family expansions relative to other published genomes include genes involved in chromatin modification, miRNA synthesis, and sugar transport. Gene losses include genes central to the IMD immune pathway, selenoprotein utilization, purine salvage, and the entire urea cycle. The pea aphid genome reveals that only a limited number of genes have been acquired from bacteria; thus the reduced gene count of Buchnera does not reflect gene transfer to the host genome. The inventory of metabolic genes in the pea aphid genome suggests that there is extensive metabolite exchange between the aphid and Buchnera, including sharing of amino acid biosynthesis between the aphid and Buchnera. The pea aphid genome provides a foundation for post-genomic studies of fundamental biological questions and applied agricultural problems.

1,271 citations

Journal ArticleDOI
TL;DR: In this paper, the root:shoot ratio is used to estimate root biomass from the more easily measured shoot biomass, which has become a core descriptor of the relationship between root and shoot biomass.
Abstract: One of the most common descriptors of the relationship between root and shoot biomass is the root : shoot ratio, which has become a core method for estimating root biomass from the more easily measured shoot biomass. Previous reviews have examined root : shoot ratio data, but have only considered particular vegetation types and have not always critically reviewed the data used. Reliable root : shoot ratios are needed for a wide range of vegetation types in order to improve the accuracy of root biomass estimates, including those required for estimating the effects of land management and land use change in National Greenhouse Gas Inventories. This study reviewed root : shoot ratios in terrestrial biomes. A key facet of our analysis was a critical methodological review, through which unreliable data were identified and omitted on the basis of specific criteria. Of the 786 root : shoot ratio observations collated, 62% were omitted because of inadequate or unverifiable root sampling methods. When only the reliable data were examined, root : shoot ratios were found to be negatively related to shoot biomass, mean annual precipitation, mean annual temperature, forest stand age, and forest stand height. Although a single allometric equation derived in this study reliably predicted root biomass from shoot biomass for forests and woodlands, in general, the use of vegetation-specific root : shoot ratios were found to be a more accurate method for predicting root biomass. When the root : shoot ratio data collated here were applied to an analysis of the global carbon budget, there was a 50% increase in estimated global root carbon stock, and a 12% increase in estimated total carbon stock of terrestrial vegetation. The use of the vegetation-specific root : shoot ratios presented in this study is likely to substantially improve the accuracy of root biomass estimates for purposes such as carbon accounting and for studies of ecosystem dynamics.

1,251 citations


Authors

Showing all 7633 results

NameH-indexPapersCitations
Eric N. Olson206814144586
Nicholas G. Martin1921770161952
Grant W. Montgomery157926108118
Paul Mitchell146137895659
James Whelan12878689180
Shaobin Wang12687252463
Graham D. Farquhar12436875181
Jie Jin Wang12071954587
Christos Pantelis12072356374
John J. McGrath120791124804
David B. Lindenmayer11995459129
Ashley I. Bush11656057009
Yong-Guan Zhu11568446973
Ary A. Hoffmann11390755354
David A. Hume11357359932
Network Information
Related Institutions (5)
University of Queensland
155.7K papers, 5.7M citations

92% related

University of Melbourne
174.8K papers, 6.3M citations

90% related

University of Sydney
187.3K papers, 6.1M citations

89% related

University of New South Wales
153.6K papers, 4.8M citations

89% related

Australian National University
109.2K papers, 4.3M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202211
2021243
2020284
2019300
2018327
2017419