scispace - formally typeset
Search or ask a question
Institution

Cooperative Research Centre

About: Cooperative Research Centre is a based out in . It is known for research contribution in the topics: Population & Sea ice. The organization has 7633 authors who have published 8607 publications receiving 429721 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The distinct biological features of CSFs offer opportunities for specific targeting, but with some associated risks, are described and the probable specific outcomes of targeting CSFs in vivo are discussed.
Abstract: Although they were originally defined as haematopoietic-cell growth factors, colony-stimulating factors (CSFs) have been shown to have additional functions by acting directly on mature myeloid cells. Recent data from animal models indicate that the depletion of CSFs has therapeutic benefit in many inflammatory and/or autoimmune conditions and as a result, early-phase clinical trials targeting granulocyte/macrophage colony-stimulating factor and macrophage colony-stimulating factor have now commenced. The distinct biological features of CSFs offer opportunities for specific targeting, but with some associated risks. Here, I describe these biological features, discuss the probable specific outcomes of targeting CSFs in vivo and highlight outstanding questions that need to be addressed.

1,187 citations

Journal ArticleDOI
TL;DR: A generic approach is proposed that incorporates essential aspects of natural flow variability shared across particular classes of rivers that can be validated with empirical biological data and other information in a calibration process and can bridge the gap between simple hydrological "rules of thumb" and more comprehensive environmental flow assessments and experimental flow restoration projects.
Abstract: Accounting for natural differences in flow variability among rivers, and understanding the importance of this for the protection of freshwater biodiversity and maintenance of goods and services that rivers provide, is a great challenge for water managers and scientists. Nevertheless, despite considerable progress in understanding how flow variability sustains river ecosystems, there is a growing temptation to ignore natural system complexity in favor of simplistic, static, environmental flow ''rules'' to resolve pressing river management issues. We argue that such approaches are misguided and will ultimately contribute to further degradation of river ecosystems. In the absence of detailed empirical information of environmental flow requirements for rivers, we propose a generic approach that incorporates essential aspects of natural flow variability shared across particular classes of rivers that can be validated with empirical biological data and other information in a calibration process. We argue that this approach can bridge the gap between simple hydrological ''rules of thumb'' and more comprehensive environmental flow assessments and experimental flow restoration projects.

1,134 citations

Journal ArticleDOI
01 Jan 1998-Nature
TL;DR: A gradient from near-primary, through old-growth secondary and plantation forests to complete clearance, for eight animal groups in the Mbalmayo Forest Reserve, south-central Cameroon is examined, indicating the huge scale of the biological effort required to provide inventories of tropical diversity, and to measure the impacts of tropical forest modification and clearance.
Abstract: Despite concern about the effects of tropical forest disturbance and clearance on biodiversity1,2, data on impacts, particularly on invertebrates, remain scarce3,4,5,6,7,8. Here we report a taxonomically diverse inventory on the impacts of tropical forest modification at one locality. We examined a gradient from near-primary, through old-growth secondary and plantation forests to complete clearance, for eight animal groups (birds, butterflies, flying beetles, canopy beetles, canopy ants, leaf-litter ants, termites and soil nematodes) in the Mbalmayo Forest Reserve, south-central Cameroon. Although species richness generally declined with increasing disturbance, no one group serves as a good indicator taxon9,10,11,12 for changes in the species richness of other groups. Species replacement from site to site (turnover) along the gradient also differs between taxonomic groups. The proportion of ‘morphospecies’ that cannot be assigned to named species and the number of ‘scientist-hours’ required to process samples both increase dramatically for smaller-bodied taxa. Data from these eight groups indicate the huge scale of the biological effort required to provide inventories of tropical diversity, and to measure the impacts of tropical forest modification and clearance.

1,119 citations

Journal ArticleDOI
TL;DR: Analysis of the Arabidopsis mutant npr1 revealed that the antagonistic effect of SA on JA signaling requires the regulatory protein NPR1, indicating that cross-talk between SA and JA is modulated through a novel function of NPR1 in the cytosol.
Abstract: Plant defenses against pathogens and insects are regulated differentially by cross-communicating signal transduction pathways in which salicylic acid (SA) and jasmonic acid (JA) play key roles. In this study, we investigated the molecular mechanism of the antagonistic effect of SA on JA signaling. Arabidopsis plants unable to accumulate SA produced 25-fold higher levels of JA and showed enhanced expression of the JA-responsive genes LOX2, PDF1.2, and VSP in response to infection by Pseudomonas syringae pv tomato DC3000, indicating that in wild-type plants, pathogen-induced SA accumulation is associated with the suppression of JA signaling. Analysis of the Arabidopsis mutant npr1, which is impaired in SA signal transduction, revealed that the antagonistic effect of SA on JA signaling requires the regulatory protein NPR1. Nuclear localization of NPR1, which is essential for SA-mediated defense gene expression, is not required for the suppression of JA signaling, indicating that cross-talk between SA and JA is modulated through a novel function of NPR1 in the cytosol.

1,088 citations

Journal ArticleDOI
05 Jun 1997-Nature
TL;DR: In this article, the authors describe the development of a biosensing technique in which the conductance of a population of molecular ion channels is switched by the recognition event, which mimics biological sensory functions and can be used with most types of receptor, including antibodies and nucleotides.
Abstract: Biosensors are molecular sensors that combine a biological recognition mechanism with a physical transduction technique. They provide a new class of inexpensive, portable instrument that permit sophisticated analytical measurements to be undertaken rapidly at decentralized locations. However, the adoption of biosensors for practical applications other than the measurement of blood glucose is currently limited by the expense, insensitivity and inflexibility of the available transduction methods. Here we describe the development of a biosensing technique in which the conductance of a population of molecular ion channels is switched by the recognition event. The approach mimics biological sensory functions and can be used with most types of receptor, including antibodies and nucleotides. The technique is very flexible and even in its simplest form it is sensitive to picomolar concentrations of proteins. The sensor is essentially an impedance element whose dimensions can readily be reduced to become an integral component of a microelectronic circuit. It may be used in a wide range of applications and in complex media, including blood. These uses might include cell typing, the detection of large proteins, viruses, antibodies, DNA, electrolytes, drugs, pesticides and other low-molecular-weight compounds.

1,088 citations


Authors

Showing all 7633 results

NameH-indexPapersCitations
Eric N. Olson206814144586
Nicholas G. Martin1921770161952
Grant W. Montgomery157926108118
Paul Mitchell146137895659
James Whelan12878689180
Shaobin Wang12687252463
Graham D. Farquhar12436875181
Jie Jin Wang12071954587
Christos Pantelis12072356374
John J. McGrath120791124804
David B. Lindenmayer11995459129
Ashley I. Bush11656057009
Yong-Guan Zhu11568446973
Ary A. Hoffmann11390755354
David A. Hume11357359932
Network Information
Related Institutions (5)
University of Queensland
155.7K papers, 5.7M citations

92% related

University of Melbourne
174.8K papers, 6.3M citations

90% related

University of Sydney
187.3K papers, 6.1M citations

89% related

University of New South Wales
153.6K papers, 4.8M citations

89% related

Australian National University
109.2K papers, 4.3M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202211
2021243
2020284
2019300
2018327
2017419