scispace - formally typeset
Search or ask a question
Institution

Cooperative Research Centre

About: Cooperative Research Centre is a based out in . It is known for research contribution in the topics: Population & Sea ice. The organization has 7633 authors who have published 8607 publications receiving 429721 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Discussion continues on agent selection, but host-specificity testing is well developed and reliable, and post-release evaluation of impact is increasing, both on the target weed and on non-target plants.
Abstract: Classical biological control, i.e. the introduction and release of exotic insects, mites, or pathogens to give permanent control, is the predominant method in weed biocontrol. Inundative releases of predators and integrated pest management are less widely used. The United States, Australia, South Africa, Canada, and New Zealand use biocontrol the most. Weeds in natural ecosystems are increasingly becoming targets for biocontrol. Discussion continues on agent selection, but host-specificity testing is well developed and reliable. Post-release evaluation of impact is increasing, both on the target weed and on non-target plants. Control of aquatic weeds has been a notable success. Alien plant problems are increasing worldwide, and biocontrol offers the only safe, economic, and environmentally sustainable solution.

1,000 citations

Journal ArticleDOI
TL;DR: Gingipains from Porphyromonas gingivalis drive Alzheimer’s pathology and can be blocked with small-molecule inhibitors, suggesting that gingipain inhibitors could be valuable for treating P. gedivalis brain colonization and neurodegeneration in Alzheimer's disease.
Abstract: Porphyromonas gingivalis, the keystone pathogen in chronic periodontitis, was identified in the brain of Alzheimer's disease patients. Toxic proteases from the bacterium called gingipains were also identified in the brain of Alzheimer's patients, and levels correlated with tau and ubiquitin pathology. Oral P. gingivalis infection in mice resulted in brain colonization and increased production of Aβ1-42, a component of amyloid plaques. Further, gingipains were neurotoxic in vivo and in vitro, exerting detrimental effects on tau, a protein needed for normal neuronal function. To block this neurotoxicity, we designed and synthesized small-molecule inhibitors targeting gingipains. Gingipain inhibition reduced the bacterial load of an established P. gingivalis brain infection, blocked Aβ1-42 production, reduced neuroinflammation, and rescued neurons in the hippocampus. These data suggest that gingipain inhibitors could be valuable for treating P. gingivalis brain colonization and neurodegeneration in Alzheimer's disease.

988 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a critical review of novel achievements in the modification of TiO2 photocatalytic systems aimed at achieving complete mineralization of organic dyes and efficient utilization of visible and/or solar light.
Abstract: Organic dyes are one of the largest groups of pollutants released into wastewaters from textile and other industrial processes. Because of potential toxicity of the dyes and their visibility in surface waters, removal and degradation of organic dyes have been a matter of considerable interest. A wide range of methods have been developed, amongst which the heterogeneous photocatalysis involving titanium dioxide (TiO2) appears to be the most promising technology. This paper presents a critical review of novel achievements in the modification of TiO2 photocatalytic systems aimed at: enhanced TiO2 photocatalytic efficiency; complete mineralization of organic dyes; efficient utilization of visible and/or solar light; stability and reproducibility of the modified TiO2; recycle and reuse in real wastewater treatment.

964 citations

Journal ArticleDOI
TL;DR: A protein map of the smallest known self‐replicating organism, Mycoplasma genitalium, revealed a high proportion of acidic proteins, which allowed proteins to be identified prior to detection of their respective genes via the M. genitalium sequencing initiative.
Abstract: A protein map of the smallest known self-replicating organism, Mycoplasma genitalium (Class: Mollicutes), revealed a high proportion of acidic proteins. Amino acid composition was used to putatively identify, or provide unique parameters, for 50 gene products separated by two-dimensional gel electrophoresis. A further 19 proteins were subjected to peptide-mass fingerprinting using matrix-assisted laser desorption ionisation-time of flight (MALDI-TOF) mass spectrometry and 4 were subjected to N-terminal Edman degradation. The majority of M. genitalium proteins remain uncharacterised. However, the combined approach of amino acid analysis and peptide-mass fingerprinting allowed gene products to be linked to homologous genes in a variety of organisms. This has allowed proteins to be identified prior to detection of their respective genes via the M. genitalium sequencing initiative. The principle of ‘hierarchical’ analysis for the mass screening of proteins and the analysis of microbial genomes via their protein complement or ‘proteome’ is detailed. Here, characterisation of gene products depends upon the quickest and most economical technologies being employed initially, so as to determine if a large number of proteins are already present in both homologous and heterologous species databases. Initial screening, which lends itself to automation and robotics, can then be followed by more time and cost intensive procedures, when necessary.

955 citations

Journal ArticleDOI
TL;DR: A classification of fragmentation sensitivity based on specific trait combinations is developed and the implications of the results for ecological theory are discussed.
Abstract: We reviewed empirical data and hypotheses derived from demographic, optimal foraging, life-history, community, and biogeographic theory for predicting the sensitivity of species to habitat fragmentation. We found 12 traits or trait groups that have been suggested as predictors of species sensitivity: population size; population fluctuation and storage effect; dispersal power; reproductive potential; annual survival; sociality; body size; trophic position; ecological specialisation, microhabitat and matrix use; disturbance and competition sensitive traits; rarity; and biogeographic position. For each trait we discuss the theoretical justification for its sensitivity to fragmentation and empirical evidence for and against the suitability of the trait as a predictor of fragmentation sensitivity. Where relevant, we also discuss experimental design problems for testing the underlying hypotheses. There is good empirical support for 6 of the 12 traits as sensitivity predictors: population size; population fluctuation and storage effects; traits associated with competitive ability and disturbance sensitivity in plants; microhabitat specialisation and matrix use; rarity in the form of low abundance within a habitat; and relative biogeographic position. Few clear patterns emerge for the remaining traits from empirical studies if examined in isolation. Consequently, interactions of species traits and environmental conditions must be considered if we want to be able to predict species sensitivity to fragmentation. We develop a classification of fragmentation sensitivity based on specific trait combinations and discuss the implications of the results for ecological theory.

951 citations


Authors

Showing all 7633 results

NameH-indexPapersCitations
Eric N. Olson206814144586
Nicholas G. Martin1921770161952
Grant W. Montgomery157926108118
Paul Mitchell146137895659
James Whelan12878689180
Shaobin Wang12687252463
Graham D. Farquhar12436875181
Jie Jin Wang12071954587
Christos Pantelis12072356374
John J. McGrath120791124804
David B. Lindenmayer11995459129
Ashley I. Bush11656057009
Yong-Guan Zhu11568446973
Ary A. Hoffmann11390755354
David A. Hume11357359932
Network Information
Related Institutions (5)
University of Queensland
155.7K papers, 5.7M citations

92% related

University of Melbourne
174.8K papers, 6.3M citations

90% related

University of Sydney
187.3K papers, 6.1M citations

89% related

University of New South Wales
153.6K papers, 4.8M citations

89% related

Australian National University
109.2K papers, 4.3M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202211
2021243
2020284
2019300
2018327
2017419