scispace - formally typeset
Search or ask a question

Showing papers by "Curtin University published in 2015"


Journal ArticleDOI
Mohsen Naghavi1, Haidong Wang1, Rafael Lozano1, Adrian Davis2  +728 moreInstitutions (294)
TL;DR: In the Global Burden of Disease Study 2013 (GBD 2013) as discussed by the authors, the authors used the GBD 2010 methods with some refinements to improve accuracy applied to an updated database of vital registration, survey, and census data.

5,792 citations


Journal ArticleDOI
TL;DR: The Global Burden of Disease, Injuries, and Risk Factor study 2013 (GBD 2013) as discussed by the authors provides a timely opportunity to update the comparative risk assessment with new data for exposure, relative risks, and evidence on the appropriate counterfactual risk distribution.

5,668 citations


Journal ArticleDOI
Theo Vos1, Ryan M Barber1, Brad Bell1, Amelia Bertozzi-Villa1  +686 moreInstitutions (287)
TL;DR: In the Global Burden of Disease Study 2013 (GBD 2013) as mentioned in this paper, the authors estimated the quantities for acute and chronic diseases and injuries for 188 countries between 1990 and 2013.

4,510 citations


Journal ArticleDOI
TL;DR: The Global Burden of Disease, Injuries, and Risk Factor study 2013 (GBD 2013) as mentioned in this paper provides a timely opportunity to update the comparative risk assessment with new data for exposure, relative risks, and evidence on the appropriate counterfactual risk distribution.

1,656 citations


Journal ArticleDOI
TL;DR: Patterns of the epidemiological transition with a composite indicator of sociodemographic status, which was constructed from income per person, average years of schooling after age 15 years, and the total fertility rate and mean age of the population, were quantified.

1,609 citations


Journal ArticleDOI
TL;DR: Electrochemical data strongly demonstrate that this nanoporous hybrid carbon material integrates the advantageous properties of the individual NC and GC, exhibiting a distinguished specific capacitance calculated from the galvanostatic charge-discharge curves at a current density of 2 A·g(-1).
Abstract: Core–shell structured ZIF-8@ZIF-67 crystals are well-designed and prepared through a seed-mediated growth method. After thermal treatment of ZIF-8@ZIF-67 crystals, we obtain selectively functionalized nanoporous hybrid carbon materials consisting of nitrogen-doped carbon (NC) as the cores and highly graphitic carbon (GC) as the shells. This is the first example of the integration of NC and GC in one particle at the nanometer level. Electrochemical data strongly demonstrate that this nanoporous hybrid carbon material integrates the advantageous properties of the individual NC and GC, exhibiting a distinguished specific capacitance (270 F·g–1) calculated from the galvanostatic charge–discharge curves at a current density of 2 A·g–1. Our study not only bridges diverse carbon-based materials with infinite metal–organic frameworks but also opens a new avenue for artificially designed nanoarchitectures with target functionalities.

1,233 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present a review of coal fly ash at the global level, focusing on its current and potential applications, including use in the soil amelioration, construction industry, ceramic industry, catalysis, depth separation, zeolite synthesis, etc.

1,167 citations


Journal ArticleDOI
TL;DR: The primary techniques for preparing nanoporous carbon spheres and the seminal research that has inspired their development, presented potential applications and uncovered future challenges are presented, as well as the current challenges and opportunities.
Abstract: Over the past decade, considerable progress has been made in the synthesis and applications of nanoporous carbon spheres ranging in size from nanometres to micrometres. This Review presents the primary techniques for preparing nanoporous carbon spheres and the seminal research that has inspired their development, presented potential applications and uncovered future challenges. First we provide an overview of the synthesis techniques, including the Stober method and those based on templating, self-assembly, emulsion and hydrothermal carbonization, with special emphasis on the design and functionalization of nanoporous carbon spheres at the molecular level. Next, we cover the key applications of these spheres, including adsorption, catalysis, separation, energy storage and biomedicine — all of which might benefit from the regular geometry, good liquidity, tunable porosity and controllable particle-size distribution offered by nanoporous carbon spheres. Finally, we present the current challenges and opportunities in the development and commercial applications of nanoporous carbon spheres.

777 citations


Journal ArticleDOI
TL;DR: In this article, the authors focused on how both income and policies in these countries affect the income-emissions (environment) relationship and found that an inverted U-shape association between emissions and income per capita, yielding empirical support to the presence of an Environmental Kuznet Curve hypothesis.

756 citations


Journal ArticleDOI
TL;DR: Reduction/Evolution Catalysts for Low-Temperature Electrochemical Devices Dengjie Chen, ⊥,∇ Chi Chen,†,⊥ Zarah Medina Baiyee,‡,§ and Francesco Ciucci*,†.
Abstract: Reduction/Evolution Catalysts for Low-Temperature Electrochemical Devices Dengjie Chen,†,⊥,∇ Chi Chen,†,⊥ Zarah Medina Baiyee,† Zongping Shao,‡,§ and Francesco Ciucci*,†,∥ †Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China ‡State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry & Chemical Engineering, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, China Department of Chemical Engineering, Curtin University, Perth, Western Australia 6845, Australia Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

726 citations


Journal ArticleDOI
Xiaoguang Duan1, Hongqi Sun1, Yuxian Wang1, Jian Kang1, Shaobin Wang1 
TL;DR: In this paper, N-doped carbon nanotubes (NoCNTs) were employed as metal-free catalysts for phenol catalytic oxidation with sulfate radicals and, more importantly, a detailed mechanism of peroxymonosulfate (PMS) activation and the roles of nitrogen heteroatoms were comprehensively investigated.
Abstract: Metal-free materials have been demonstrated to be promising alternatives to conventional metal-based catalysts. Catalysis on nanocarbons comparable to that of cobalt- or manganese-based catalysts in peroxymonosulfate (PMS) activation has been achieved, yet the catalyst stability has to be addressed and the mechanism also needs to be elucidated. In this study, N-doped carbon nanotubes (NoCNTs) were employed as metal-free catalysts for phenol catalytic oxidation with sulfate radicals and, more importantly, a detailed mechanism of PMS activation and the roles of nitrogen heteroatoms were comprehensively investigated. For the first time, a nonradical pathway accompanied by radical generation (•OH and SO4•–) in phenol oxidation with PMS was discovered upon nitrogen heteroatom doping. The NoCNTs presented excellent stability due to the emerging nonradical processes. The findings can be used for the design of efficient and robust metal-free catalysts with both superior catalytic performance and high stability fo...

Book
24 Nov 2015
TL;DR: Point patterns Statistical methodology for point patterns Statistical inference for Poisson models Alternative fitting methods More flexible models Theory Coarse quadrature approximation Fine pixel approximation Conditional logistic regression Approximate Bayesian inference Non-loglinear models Local likelihood FAQ Hypothesis Tests and Simulation Envelopes Introduction concepts and terminology.
Abstract: BASICS Introduction Point patterns Statistical methodology for point patterns About this book Software Essentials Introduction to RR Packages for R Introduction to spatstat Getting started with spatstat FAQ Collecting and Handling Point Pattern Data Surveys and experiments Data handling Entering point pattern data into spatstat Data errors and quirks Windows in spatstat Pixel images in spatstat Line segment patterns Collections of objects Interactive data entry in spatstat Reading GIS file formats FAQ Inspecting and Exploring Data Plotting Manipulating point patterns and windows Exploring images Using line segment patterns Tessellations FAQ Point Process Methods Motivation Basic definitions Complete spatial randomness Inhomogeneous Poisson process A menagerie of models Fundamental issues Goals of analysis EXPLORATORY DATA ANALYSIS Intensity Introduction Estimating homogeneous intensity Technical definition Quadrat counting Smoothing estimation of intensity function Investigating dependence of intensity on a covariate Formal tests of (non-)dependence on a covariate Hot spots, clusters, and local features Kernel smoothing of marks FAQ Correlation Introduction Manual methods The K-function Edge corrections for the K-function Function objects in spatstat The pair correlation function Standard errors and confidence intervals Testing whether a pattern is completely random Detecting anisotropy Adjusting for inhomogeneity Local indicators of spatial association Third- and higher-order summary statistics Theory FAQ Spacing Introduction Basic methods Nearest-neighbour function G and empty-space function F Confidence intervals and simulation envelopes Empty-space hazard J-function Inhomogeneous F-, G- and J-functions Anisotropy and the nearest-neighbour orientation Empty-space distance for a spatial pattern Distance from a point pattern to another spatial pattern Theory for edge corrections Palm distribution FAQ STATISTICAL INFERENCE Poisson Models Introduction Poisson point process models Fitting Poisson models in spatstat Statistical inference for Poisson models Alternative fitting methods More flexible models Theory Coarse quadrature approximation Fine pixel approximation Conditional logistic regression Approximate Bayesian inference Non-loglinear models Local likelihood FAQ Hypothesis Tests and Simulation Envelopes Introduction Concepts and terminology Testing for a covariate effect in a parametric model Quadrat counting tests Tests based on the cumulative distribution function Monte Carlo tests Monte Carlo tests based on summary functions Envelopes in spatstat Other presentations of envelope tests Dao-Genton test and envelopes Power of tests based on summary functions FAQ Model Validation Overview of validation techniques Relative intensity Residuals for Poisson processes Partial residual plots Added variable plots Validating the independence assumption Leverage and influence Theory for leverage and influence FAQ Cluster and Cox Models Introduction Cox processes Cluster processes Fitting Cox and cluster models to data Locally fitted models Theory FAQ Gibbs Models Introduction Conditional intensity Key concepts Statistical insights Fitting Gibbs models to data Pairwise interaction models Higher-order interactions Hybrids of Gibbs models Simulation Goodness-of-fit and validation for fitted Gibbs models Locally fitted models Theory: Gibbs processes Theory: Fitting Gibbs models Determinantal point processes FAQ Patterns of Several Types of Points Introduction Methodological issues Handling multitype point pattern data Exploratory analysis of intensity Multitype Poisson models Correlation and spacing Tests of randomness and independence Multitype Gibbs models Hierarchical interactions Multitype Cox and cluster processes Other multitype processes Theory FAQ ADDITIONAL STRUCTURE Higher-Dimensional Spaces and Marks Introduction Point patterns with numerical or multidimensional marks Three-dimensional point patterns Point patterns with any kinds of marks and coordinates FAQ Replicated Point Patterns and Designed Experiments Introduction Methodology Lists of objects Hyperframes Computing with hyperframes Replicated point pattern datasets in spatstat Exploratory data analysis Analysing summary functions from replicated patterns Poisson models Gibbs models Model validation Theory FAQ Point Patterns on a Linear Network Introduction Network geometry Data handling Intensity Poisson models Intensity on a tree Pair correlation function K-function FAQ

Journal ArticleDOI
TL;DR: The main purpose of this review paper is to provide a current summary of recent progress in perovskite materials for use in these important areas and to provide some useful guidelines for future development in these hot research areas.
Abstract: Meeting the growing global energy demand is one of the important challenges of the 21st century. Currently over 80% of the world's energy requirements are supplied by the combustion of fossil fuels, which promotes global warming and has deleterious effects on our environment. Moreover, fossil fuels are non-renewable energy and will eventually be exhausted due to the high consumption rate. A new type of alternative energy that is clean, renewable and inexpensive is urgently needed. Several candidates are currently available such as hydraulic power, wind force and nuclear power. Solar energy is particularly attractive because it is essentially clean and inexhaustible. A year's worth of sunlight would provide more than 100 times the energy of the world's entire known fossil fuel reserves. Photocatalysis and photovoltaics are two of the most important routes for the utilization of solar energy. However, environmental protection is also critical to realize a sustainable future, and water pollution is a serious problem of current society. Photocatalysis is also an essential route for the degradation of organic dyes in wastewater. A type of compound with the defined structure of perovskite (ABX3) was observed to play important roles in photocatalysis and photovoltaics. These materials can be used as photocatalysts for water splitting reaction for hydrogen production and photo-degradation of organic dyes in wastewater as well as for photoanodes in dye-sensitized solar cells and light absorbers in perovskite-based solar cells for electricity generation. In this review paper, the recent progress of perovskites for applications in these fields is comprehensively summarized. A description of the basic principles of the water splitting reaction, photo-degradation of organic dyes and solar cells as well as the requirements for efficient photocatalysts is first provided. Then, emphasis is placed on the designation and strategies for perovskite catalysts to improve their photocatalytic activity and/or light adsorption capability. Comments on current and future challenges are also provided. The main purpose of this review paper is to provide a current summary of recent progress in perovskite materials for use in these important areas and to provide some useful guidelines for future development in these hot research areas.

Journal ArticleDOI
Marnix H. Medema1, Marnix H. Medema2, Renzo Kottmann1, Pelin Yilmaz1  +161 moreInstitutions (84)
TL;DR: This work proposes the Minimum Information about a Biosynthetic Gene cluster (MIBiG) data standard, to facilitate consistent and systematic deposition and retrieval of data on biosynthetic gene clusters.
Abstract: A wide variety of enzymatic pathways that produce specialized metabolites in bacteria, fungi and plants are known to be encoded in biosynthetic gene clusters. Information about these clusters, pathways and metabolites is currently dispersed throughout the literature, making it difficult to exploit. To facilitate consistent and systematic deposition and retrieval of data on biosynthetic gene clusters, we propose the Minimum Information about a Biosynthetic Gene cluster (MIBiG) data standard.

Journal ArticleDOI
TL;DR: The sample of NG-700, obtained at a calcination temperature of 700 °C, showed the highest efficiency in degradation of phenol solutions by metal-free catalytic activation of peroxymonosulfate (PMS).
Abstract: N-Doped graphene (NG) nanomaterials were synthesized by directly annealing graphene oxide (GO) with a novel nitrogen precursor of melamine. A high N-doping level, 8–11 at. %, was achieved at a moderate temperature. The sample of NG-700, obtained at a calcination temperature of 700 °C, showed the highest efficiency in degradation of phenol solutions by metal-free catalytic activation of peroxymonosulfate (PMS). The catalytic activity of the N-doped rGO (NG-700) was about 80 times higher than that of undoped rGO in phenol degradation. Moreover, the activity of NG-700 was 18.5 times higher than that of the most popular metal-based catalyst of nanocrystalline Co3O4 in PMS activation. Theoretical calculations using spin–unrestricted density functional theory (DFT) were carried out to probe the active sites for PMS activation on N-doped graphene. In addition, experimental detection of generated radicals using electron paramagnetic resonance (EPR) and competitive radical reactions was performed to reveal the PMS...

Journal ArticleDOI
TL;DR: In this article, a variety of dimensional-structured nanocarbons were applied for the first time as metal-free catalysts to activate persulfate (PS) for catalytic oxidation of phenolics and dyes as well as their degradation intermediates.
Abstract: A variety of dimensional-structured nanocarbons were applied for the first time as metal-free catalysts to activate persulfate (PS) for catalytic oxidation of phenolics and dyes as well as their degradation intermediates. Single-walled carbon nanotubes (SWCNTs), reduced graphene oxide (rGO), and mesoporous carbon (CMK-8) demonstrated superior catalytic activities for heterogeneous PS activation, whereas fullerene (C60), nanodiamonds, and graphitic carbon nitride (g-C3N4) presented low efficiencies. Moreover, the carbocatalysts presented even better catalytic performances than activated carbon and metal oxides, such as Fe3O4, CuO, Co3O4, and MnO2. The activity of prepared rGO-900 was further competing to the most efficient electron donor of zerovalent iron (ZVI). Both characterization and oxidation results suggested that the catalytic performances of the nanocarbons are determined by the intrinsic atom arrangements of carbon hybridization, pore structure, defective sites, and functional groups (especially ...

Journal ArticleDOI
Xiaoguang Duan1, Kane M. O'Donnell1, Hongqi Sun1, Yuxian Wang1, Shaobin Wang1 
01 Jul 2015-Small
TL;DR: This study presents a novel metal-free catalyst for green remediation of organic pollutants in water that can effectively break the inertness of carbon systems, activate the sp(2) -hybridized carbon lattice and facilitate the electron transfer from covalent graphene sheets for PMS activation.
Abstract: S ulfur and nitrogen co-doped reduced graphene oxide (rGO) is synthesized by a facile method and demonstrated remarkably enhanced activities in metal-free activation of peroxymonosulfate (PMS) for catalytic oxidation of phenol. Based on fi rst-order kinetic model, S‐N co-doped rGO (SNG) presents an apparent reaction rate constant of 0.043 ± 0.002 min −1 , which is 86.6, 22.8, 19.7, and 4.5-fold as high as that over graphene oxide (GO), rGO, S-doped rGO (S-rGO), and N-doped rGO (N-rGO), respectively. A variety of characterization techniques and density functional theory calculations are employed to investigate the synergistic effect of sulfur and nitrogen co-doping. Co-doping of rGO at an optimal sulfur loading can effectively break the inertness of carbon systems, activate the sp 2 -hybridized carbon lattice and facilitate the electron transfer from covalent graphene sheets for PMS activation. Moreover, both electron paramagnetic resonance (EPR) spectroscopy and classical quenching tests are employed to investigate the generation and evolution of reactive radicals on the SNG sample for phenol catalytic oxidation. This study presents a novel metal-free catalyst for green remediation of organic pollutants in water.

Journal ArticleDOI
25 Sep 2015-Science
TL;DR: It is concluded that binary evolution is either stalled or dramatically accelerated by galactic-center environments and that higher-cadence and shorter-wavelength observations would be more sensitive to gravitational waves.
Abstract: Gravitational waves are expected to be radiated by supermassive black hole binaries formed during galaxy mergers. A stochastic superposition of gravitational waves from all such binary systems would modulate the arrival times of pulses from radio pulsars. Using observations of millisecond pulsars obtained with the Parkes radio telescope, we constrained the characteristic amplitude of this background, A(c,yr), to be <1.0 × 10(-15) with 95% confidence. This limit excludes predicted ranges for A(c,yr) from current models with 91 to 99.7% probability. We conclude that binary evolution is either stalled or dramatically accelerated by galactic-center environments and that higher-cadence and shorter-wavelength observations would be more sensitive to gravitational waves.

Journal ArticleDOI
TL;DR: A review of the current status of mathematical modelling studies of biomass pyrolysis with the aim to identify knowledge gaps for further research and opportunities for integration of biometer-level models of disparate scales is provided in this paper.
Abstract: Biomass as a form of energy source may be utilized in two different ways: directly by burning the biomass and indirectly by converting it into solid, liquid or gaseous fuels. Pyrolysis is an indirect conversion method, and can be described in simpler terms as a thermal decomposition of biomass under oxygen-depleted conditions to an array of solid, liquid and gaseous products, namely biochar, bio-oil and fuel gas. However, pyrolysis of biomass is a complex chemical process with several operational and environmental challenges. Consequently, this process has been widely investigated in order to understand the mechanisms and kinetics of pyrolysis at different scales, viz. particle level, multi-phase reacting flow, product distribution and reactor performance, process integration and control. However, there are a number of uncertainties in current biomass pyrolysis models, especially in their ability to optimize process conditions to achieve desired product yields and distribution. The present contribution provides a critical review of the current status of mathematical modelling studies of biomass pyrolysis with the aim to identify knowledge gaps for further research and opportunities for integration of biomass pyrolysis models of disparate scales. Models for the hydrodynamic behaviour of particles in pyrolysis, and their interaction with the reactive flow and the effect on the performance of the reactors have also been critically analyzed. From this analysis it becomes apparent that feedstock characteristics, evolving physical and chemical properties of biomass particles and residence times of both solid and gas phases in reactors hold the key to the desired performance of the pyrolysis process. Finally, the importance of catalytic effects in pyrolysis has also been critically analyzed, resulting in recommendations for further research in this area especially on selection of catalysts for optimal product yields under varying operating conditions.

Journal ArticleDOI
TL;DR: The perovskite SrNb0.1 Co0.7 Fe0.2 O3-δ (SNCF) is a promising OER electrocatalyst for the oxygen evolution reaction (OER), with remarkable activity and stability in alkaline solutions.
Abstract: The perovskite SrNb0.1 Co0.7 Fe0.2 O3-δ (SNCF) is a promising OER electrocatalyst for the oxygen evolution reaction (OER), with remarkable activity and stability in alkaline solutions. This catalyst exhibits a higher intrinsic OER activity, a smaller Tafel slope and better stability than the state-of-the-art precious-metal IrO2 catalyst and the well-known BSCF perovskite. The mass activity and stability are further improved by ball milling. Several factors including the optimized eg orbital filling, good ionic and charge transfer abilities, as well as high OH(-) adsorption and O2 desorption capabilities possibly contribute to the excellent OER activity.

Journal ArticleDOI
TL;DR: It is argued that tag jumping and contamination between libraries represents a considerable challenge for Illumina‐based metabarcoding studies, and measures to avoid false assignment of tag jumping‐derived sequences to samples are suggested.
Abstract: Metabarcoding of environmental samples on second-generation sequencing platforms has rapidly become a valuable tool for ecological studies. A fundamental assumption of this approach is the reliance on being able to track tagged amplicons back to the samples from which they originated. In this study, we address the problem of sequences in metabarcoding sequencing outputs with false combinations of used tags (tag jumps). Unless these sequences can be identified and excluded from downstream analyses, tag jumps creating sequences with false, but already used tag combinations, can cause incorrect assignment of sequences to samples and artificially inflate diversity. In this study, we document and investigate tag jumping in metabarcoding studies on Illumina sequencing platforms by amplifying mixed-template extracts obtained from bat droppings and leech gut contents with tagged generic arthropod and mammal primers, respectively. We found that an average of 2.6% and 2.1% of sequences had tag combinations, which could be explained by tag jumping in the leech and bat diet study, respectively. We suggest that tag jumping can happen during blunt-ending of pools of tagged amplicons during library build and as a consequence of chimera formation during bulk amplification of tagged amplicons during library index PCR. We argue that tag jumping and contamination between libraries represents a considerable challenge for Illumina-based metabarcoding studies, and suggest measures to avoid false assignment of tag jumping-derived sequences to samples.

Journal ArticleDOI
TL;DR: A meta-analysis of unpublished data to estimate the sex-specific relationship between women and men with diabetes with incident dementia found individuals with type 2 diabetes are at ∼60% greater risk for the development of dementia compared with those without diabetes.
Abstract: OBJECTIVE Type 2 diabetes confers a greater excess risk of cardiovascular disease in women than in men. Diabetes is also a risk factor for dementia, but whether the association is similar in women and men remains unknown. We performed a meta-analysis of unpublished data to estimate the sex-specific relationship between women and men with diabetes with incident dementia. RESEARCH DESIGN AND METHODS A systematic search identified studies published prior to November 2014 that had reported on the prospective association between diabetes and dementia. Study authors contributed unpublished sex-specific relative risks (RRs) and 95% CIs on the association between diabetes and all dementia and its subtypes. Sex-specific RRs and the women-to-men ratio of RRs (RRRs) were pooled using random-effects meta-analyses. RESULTS Study-level data from 14 studies, 2,310,330 individuals, and 102,174 dementia case patients were included. In multiple-adjusted analyses, diabetes was associated with a 60% increased risk of any dementia in both sexes (women: pooled RR 1.62 [95% CI 1.45–1.80]; men: pooled RR 1.58 [95% CI 1.38–1.81]). The diabetes-associated RRs for vascular dementia were 2.34 (95% CI 1.86–2.94) in women and 1.73 (95% CI 1.61–1.85) in men, and for nonvascular dementia, the RRs were 1.53 (95% CI 1.35–1.73) in women and 1.49 (95% CI 1.31–1.69) in men. Overall, women with diabetes had a 19% greater risk for the development of vascular dementia than men (multiple-adjusted RRR 1.19 [95% CI 1.08–1.30]; P CONCLUSIONS Individuals with type 2 diabetes are at ∼60% greater risk for the development of dementia compared with those without diabetes. For vascular dementia, but not for nonvascular dementia, the additional risk is greater in women.

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the literature data published on the topic of CO2 wettability of storage and seal rocks and showed that the current contact angle data have a large uncertainty.
Abstract: We review the literature data published on the topic of CO2 wettability of storage and seal rocks. We first introduce the concept of wettability and explain why it is important in the context of carbon geo-sequestration (CGS) projects, and review how it is measured. This is done to raise awareness of this parameter in the CGS community, which, as we show later on in this text, may have a dramatic impact on structural and residual trapping of CO2. These two trapping mechanisms would be severely and negatively affected in case of CO2-wet storage and/or seal rock. Overall, at the current state of the art, a substantial amount of work has been completed, and we find that: Sandstone and limestone, plus pure minerals such as quartz, calcite, feldspar, and mica are strongly water wet in a CO2-water system. Oil-wet limestone, oil-wet quartz, or coal is intermediate wet or CO2 wet in a CO2-water system. The contact angle alone is insufficient for predicting capillary pressures in reservoir or seal rocks. The current contact angle data have a large uncertainty. Solid theoretical understanding on a molecular level of rock-CO2-brine interactions is currently limited. In an ideal scenario, all seal and storage rocks in CGS formations are tested for their CO2 wettability. Achieving representative subsurface conditions (especially in terms of the rock surface) in the laboratory is of key importance but also very challenging.

Journal ArticleDOI
Ngo Van Hai1
TL;DR: Medicinal plants show their main properties as growth promoters, immune enhancers, where they act as antibacterial and antiviral agents to the host immune system, although the mechanisms are not fully understood.

Journal ArticleDOI
TL;DR: In this paper, a zeolitic-imidazolate-framework (ZIF) layer-protected carbonization route is developed to prepare N-doped nanoporous carbon/graphene nano-sandwiches.
Abstract: A zeolitic-imidazolate-framework (ZIF) nanocrystal layer-protected carbonization route is developed to prepare N-doped nanoporous carbon/graphene nano-sandwiches. The ZIF/graphene oxide/ZIF sandwich-like structure with ultrasmall ZIF nanocrystals (i.e., ≈20 nm) fully covering the graphene oxide (GO) is prepared via a homogenous nucleation followed by a uniform deposition and confined growth process. The uniform coating of ZIF nanocrystals on the GO layer can effectively inhibit the agglomeration of GO during high-temperature treatment (800 °C). After carbonization and acid etching, N-doped nanoporous carbon/graphene nanosheets are formed, with a high specific surface area (1170 m2 g−1). These N-doped nanoporous carbon/graphene nanosheets are used as the nonprecious metal electrocatalysts for oxygen reduction and exhibit a high onset potential (0.92 V vs reversible hydrogen electrode; RHE) and a large limiting current density (5.2 mA cm−2 at 0.60 V). To further increase the oxygen reduction performance, nanoporous Co-Nx/carbon nanosheets are also prepared by using cobalt nitrate and zinc nitrate as cometal sources, which reveal higher onset potential (0.96 V) than both commercial Pt/C (0.94 V) and N-doped nanoporous carbon/graphene nanosheets. Such nanoporous Co-Nx/carbon nanosheets also exhibit good performance such as high activity, stability, and methanol tolerance in acidic media.

Journal ArticleDOI
TL;DR: A literature search was conducted to identify molecular commonalities between obesity, diabetes, and AD and found the chronic inflammatory response and oxidative stress associated with T2DM, amyloid-β (Aβ) protein accumulation, and mitochondrial dysfunction link T2 DM and AD.
Abstract: Type 2 diabetes (T2DM), Alzheimer's disease (AD), and insulin resistance are age-related conditions and increased prevalence is of public concern. Recent research has provided evidence that insulin resistance and impaired insulin signalling may be a contributory factor to the progression of diabetes, dementia, and other neurological disorders. Alzheimer's disease (AD) is the most common subtype of dementia. Reduced release (for T2DM) and decreased action of insulin are central to the development and progression of both T2DM and AD. A literature search was conducted to identify molecular commonalities between obesity, diabetes, and AD. Insulin resistance affects many tissues and organs, either through impaired insulin signalling or through aberrant changes in both glucose and lipid (cholesterol and triacylglycerol) metabolism and concentrations in the blood. Although epidemiological and biological evidence has highlighted an increased incidence of cognitive decline and AD in patients with T2DM, the common molecular basis of cell and tissue dysfunction is rapidly gaining recognition. As a cause or consequence, the chronic inflammatory response and oxidative stress associated with T2DM, amyloid-β (Aβ) protein accumulation, and mitochondrial dysfunction link T2DM and AD.

Journal ArticleDOI
TL;DR: The results suggest that, whereas convergent molecular evolution is relatively common, adaptive molecular convergence linked to phenotypic convergence is comparatively rare.
Abstract: Marine mammals from different mammalian orders share several phenotypic traits adapted to the aquatic environment and therefore represent a classic example of convergent evolution. To investigate convergent evolution at the genomic level, we sequenced and performed de novo assembly of the genomes of three species of marine mammals (the killer whale, walrus and manatee) from three mammalian orders that share independently evolved phenotypic adaptations to a marine existence. Our comparative genomic analyses found that convergent amino acid substitutions were widespread throughout the genome and that a subset of these substitutions were in genes evolving under positive selection and putatively associated with a marine phenotype. However, we found higher levels of convergent amino acid substitutions in a control set of terrestrial sister taxa to the marine mammals. Our results suggest that, whereas convergent molecular evolution is relatively common, adaptive molecular convergence linked to phenotypic convergence is comparatively rare.

Journal ArticleDOI
TL;DR: PMS oxidation with CoMn2O4 is an efficient technique for remediation of organic contaminants in wastewater and could maintain its catalytic activity in the repeated batch experiments, and a rational mechanism was proposed.

Journal ArticleDOI
TL;DR: With these characteristics, digital badges have the potential to become an alternative credentialing system, providing visible recognition in digital symbols that link directly via metadata to validating evidence of educational achievements in public displays.
Abstract: Digital badges provide new affordances for online educational activities and experiences. When used with points and leaderboards, a badge can become a gamification element allowing learners to compete with themselves or others, and to know how close they are to accomplishing a goal and acquiring its accompanying reputation. In this role, badges motivate continued engagement, which increases time on task and supports skill acquisition through performance. Learning outcomes signified by badges can also be displayed in an e-portfolio or on web sites and are highly transportable to social media sites. In this role they summarize achievement and signal accomplishment. With these characteristics, digital badges have the potential to become an alternative credentialing system, providing visible recognition in digital symbols that link directly via metadata to validating evidence of educational achievements in public displays. This paper will trace the brief history of digital badges, define what they are, give examples of their use, and discuss their educational affordances.

Journal ArticleDOI
Yuxian Wang1, Hongqi Sun1, Ha Ming Ang1, Moses O. Tadé1, Shaobin Wang1 
TL;DR: In this article, a simple hydrothermal route was used to synthesize corolla-like and urchin-shaped α-MnO2 with sub-blocks of nanorods.
Abstract: Hierarchical materials have facilitated fascinating applications in heterogeneous catalysis due to that micro-sized bulk is easily separable and nano-sized sub-blocks can significantly enhance catalytic performance. In this study, corolla-like δ-MnO2 with sub-blocks of nanosheets, and urchin-shaped α-MnO2 with sub-blocks of nanorods were synthesized by a simple hydrothermal route. The hydrothermal temperature significantly influenced the crystal structure, morphology and textural structure of the obtained three-dimensional (3D) MnO2 catalysts. The catalytic activities of three samples prepared at 60, 100 and 110 °C (denoted as Mn-60, -100 and -110, respectively) were thoroughly evaluated by activation of peroxymonosulfate (PMS) for catalytic oxidation of phenol solutions. Based on first-order kinetics, the rate constants of Mn-60, -100 and -110 catalysts were determined to be 0.062, 0.132, and 0.075 min−1, respectively. The activation energy of Mn-100 in catalytic oxidation of phenol solutions was estimated to be 25.3 kJ/mol. The catalytic stability of Mn-100 was also tested and discussed by monitoring Mn leaching. Electron paramagnetic resonance (EPR), quenching tests, total organic carbon (TOC) analysis and identification of intermediates were applied to illustrate the activation processes of PMS and the mechanism of phenol degradation.