scispace - formally typeset
Search or ask a question
Institution

Daegu Gyeongbuk Institute of Science and Technology

EducationDaegu, South Korea
About: Daegu Gyeongbuk Institute of Science and Technology is a education organization based out in Daegu, South Korea. It is known for research contribution in the topics: Thin film & Catalysis. The organization has 2592 authors who have published 5150 publications receiving 86702 citations. The organization is also known as: DGIST.
Topics: Thin film, Catalysis, Electrolyte, Graphene, Electrode


Papers
More filters
Journal ArticleDOI
TL;DR: These guidelines are presented for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.

4,316 citations

Journal ArticleDOI
TL;DR: It is demonstrated computationally that by shifting from phenyl groups to "space efficient" acetylene moieties as linker expansion units, the hypothetical maximum surface area for a MOF material is substantially greater than previously envisioned.
Abstract: We have synthesized, characterized, and computationally simulated/validated the behavior of two new metal–organic framework (MOF) materials displaying the highest experimental Brunauer–Emmett–Teller (BET) surface areas of any porous materials reported to date (∼7000 m2/g). Key to evacuating the initially solvent-filled materials without pore collapse, and thereby accessing the ultrahigh areas, is the use of a supercritical CO2 activation technique. Additionally, we demonstrate computationally that by shifting from phenyl groups to “space efficient” acetylene moieties as linker expansion units, the hypothetical maximum surface area for a MOF material is substantially greater than previously envisioned (∼14600 m2/g (or greater) versus ∼10500 m2/g).

1,393 citations

Journal ArticleDOI
TL;DR: In this paper, stable magnetic skyrmions at room temperature in ultrathin transition metal ferromagnets with magnetic transmission soft X-ray microscopy were observed and demonstrated.
Abstract: Magnetic skyrmions are topologically protected spin textures that exhibit fascinating physical behaviours and large potential in highly energy-efficient spintronic device applications. The main obstacles so far are that skyrmions have been observed in only a few exotic materials and at low temperatures, and fast current-driven motion of individual skyrmions has not yet been achieved. Here, we report the observation of stable magnetic skyrmions at room temperature in ultrathin transition metal ferromagnets with magnetic transmission soft X-ray microscopy. We demonstrate the ability to generate stable skyrmion lattices and drive trains of individual skyrmions by short current pulses along a magnetic racetrack at speeds exceeding 100 m s(-1) as required for applications. Our findings provide experimental evidence of recent predictions and open the door to room-temperature skyrmion spintronics in robust thin-film heterostructures.

1,364 citations

Journal ArticleDOI
TL;DR: In this paper, the NiCo2S4 NW/NF arrays on a 3D Ni foam (NF) were used for solar-to-hydrogen (S2H) generation, achieving a hydrogen production current density of 10 mA cm-2 at an overpotential of 260 mV for the oxygen evolution reaction and at 210 mV (versus a reversible hydrogen electrode).
Abstract: A recent approach for solar-to-hydrogen generation has been water electrolysis using efficient, stable, and inexpensive bifunctional electrocatalysts within strong electrolytes. Herein, the direct growth of 1D NiCo2S4 nanowire (NW) arrays on a 3D Ni foam (NF) is described. This NiCo2S4 NW/NF array functions as an efficient bifunctional electrocatalyst for overall water splitting with excellent activity and stability. The 3D-Ni foam facilitates the directional growth, exposing more active sites of the catalyst for electrochemical reactions at the electrode–electrolyte interface. The binder-free, self-made NiCo2S4 NW/NF electrode delivers a hydrogen production current density of 10 mA cm–2 at an overpotential of 260 mV for the oxygen evolution reaction and at 210 mV (versus a reversible hydrogen electrode) for the hydrogen evolution reaction in 1 m KOH. This highly active and stable bifunctional electrocatalyst enables the preparation of an alkaline water electrolyzer that could deliver 10 mA cm–2 under a cell voltage of 1.63 V. Because the nonprecious-metal NiCo2S4 NW/NF foam-based electrodes afford the vigorous and continuous evolution of both H2 and O2 at 1.68 V, generated using a solar panel, they appear to be promising water splitting devices for large-scale solar-to-hydrogen generation.

1,152 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes.
Abstract: In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.

1,129 citations


Authors

Showing all 2613 results

NameH-indexPapersCitations
Jong-Sung Yu124105172637
Barbara B. Kahn10328153325
Wonyong Choi9843349043
Kwang S. Kim9764262053
Bradley J. Nelson9272143619
Edward I. Solomon8837824414
Harry W.M. Steinbusch6723518540
Jin-Ho Choy6556317410
Hong Gil Nam6422113759
Daehee Hwang5722812710
Gabriele V. Ronnett5613411361
Harry W.M. Steinbusch541657596
Hyunwoong Park5418311245
O Ok Park5337311444
Jonathan A. Fan5116810406
Network Information
Related Institutions (5)
KAIST
77.6K papers, 1.8M citations

95% related

Nanyang Technological University
112.8K papers, 3.2M citations

92% related

Seoul National University
138.7K papers, 3.7M citations

92% related

Korea University
82.4K papers, 1.8M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202311
202258
2021617
2020632
2019604
2018578