scispace - formally typeset
Search or ask a question
Institution

Dalian University of Technology

EducationDalian, China
About: Dalian University of Technology is a education organization based out in Dalian, China. It is known for research contribution in the topics: Catalysis & Finite element method. The organization has 60890 authors who have published 71921 publications receiving 1188356 citations. The organization is also known as: Dàlián Lǐgōng Dàxué.


Papers
More filters
Journal ArticleDOI
TL;DR: Findings show that melatonin attenuates the development of diabetes‐induced cardiac dysfunction by preventing mitochondrial fission through SIRT1‐PGC1α pathway, which negatively regulates the expression of Drp1 directly.
Abstract: Myocardial contractile dysfunction is associated with an increase in mitochondrial fission in patients with diabetes. However, whether mitochondrial fission directly promotes diabetes-induced cardiac dysfunction is still unknown. Melatonin exerts a substantial influence on the regulation of mitochondrial fission/fusion. This study investigated whether melatonin protects against diabetes-induced cardiac dysfunction via regulation of mitochondrial fission/fusion and explored its underlying mechanisms. Here, we show that melatonin prevented diabetes-induced cardiac dysfunction by inhibiting dynamin-related protein 1 (Drp1)-mediated mitochondrial fission. Melatonin treatment decreased Drp1 expression, inhibited mitochondrial fragmentation, suppressed oxidative stress, reduced cardiomyocyte apoptosis, improved mitochondrial function and cardiac function in streptozotocin (STZ)-induced diabetic mice, but not in SIRT1-/- diabetic mice. In high glucose-exposed H9c2 cells, melatonin treatment increased the expression of SIRT1 and PGC-1α and inhibited Drp1-mediated mitochondrial fission and mitochondria-derived superoxide production. In contrast, SIRT1 or PGC-1α siRNA knockdown blunted the inhibitory effects of melatonin on Drp1 expression and mitochondrial fission. These data indicated that melatonin exerted its cardioprotective effects by reducing Drp1-mediated mitochondrial fission in a SIRT1/PGC-1α-dependent manner. Moreover, chromatin immunoprecipitation analysis revealed that PGC-1α directly regulated the expression of Drp1 by binding to its promoter. Inhibition of mitochondrial fission with Drp1 inhibitor mdivi-1 suppressed oxidative stress, alleviated mitochondrial dysfunction and cardiac dysfunction in diabetic mice. These findings show that melatonin attenuates the development of diabetes-induced cardiac dysfunction by preventing mitochondrial fission through SIRT1-PGC1α pathway, which negatively regulates the expression of Drp1 directly. Inhibition of mitochondrial fission may be a potential target for delaying cardiac complications in patients with diabetes.

222 citations

Journal ArticleDOI
TL;DR: In this review, the latest development of stress tolerance mechanisms was focused, and improvement of yeast stress tolerance by both random and rational tools was presented.

221 citations

Journal ArticleDOI
TL;DR: Compared to conventional ABE fermentation, the fed‐batch fermentation with intermittent gas stripping has the potential to reduce at least 90% of energy consumption and water usage in n‐butanol production from glucose.
Abstract: Acetone–butanol–ethanol (ABE) fermentation with a hyper-butanol producing Clostridium acetobutylicum JB200 was studied for its potential to produce a high titer of butanol that can be readily recovered with gas stripping. In batch fermentation without gas stripping, a final butanol concentration of 19.1 g/L was produced from 86.4 g/L glucose consumed in 78 h, and butanol productivity and yield were 0.24 g/L h and 0.21 g/g, respectively. In contrast, when gas stripping was applied intermittently in fed-batch fermentation, 172 g/L ABE (113.3 g/L butanol, 49.2 g/L acetone, 9.7 g/L ethanol) were produced from 474.9 g/L glucose in six feeding cycles over 326 h. The overall productivity and yield were 0.53 g/L h and 0.36 g/g for ABE and 0.35 g/L h and 0.24 g/g for butanol, respectively. The higher productivity was attributed to the reduced butanol concentration in the fermentation broth by gas stripping that alleviated butanol inhibition, whereas the increased butanol yield could be attributed to the reduced acids accumulation as most acids produced in acidogenesis were reassimilated by cells for ABE production. The intermittent gas stripping produced a highly concentrated condensate containing 195.9 g/L ABE or 150.5 g/L butanol that far exceeded butanol solubility in water. After liquid–liquid demixing or phase separation, a final product containing ∼610 g/L butanol, ∼40 g/L acetone, ∼10 g/L ethanol, and no acids was obtained. Compared to conventional ABE fermentation, the fed-batch fermentation with intermittent gas stripping has the potential to reduce at least 90% of energy consumption and water usage in n-butanol production from glucose. Biotechnol. Bioeng. 2012; 109: 2746–2756. © 2012 Wiley Periodicals, Inc.

221 citations

Journal ArticleDOI
TL;DR: Aligned multiwalled carbon nanotubes (MWNTs) coated with TiO2 nanoparticles were fabricated on a titanium foil by atmospheric pressure chemical vapor deposition (CVD) as discussed by the authors.
Abstract: Aligned multiwalled carbon nanotubes (MWNTs) coated with TiO2 nanoparticles were fabricated on a titanium foil by atmospheric pressure chemical vapor deposition (CVD). Their morphology was characte...

221 citations

Journal ArticleDOI
Ying Lu1, Hongtao Yu1, Shuo Chen1, Xie Quan1, Huimin Zhao1 
TL;DR: The excellent photocatalysis benefited from the cooperatively enhanced light harvesting owing to the localized surface plasmon resonance of Au NPs, which extended the light response spectra and the photonic effect of the TiO(2) 240 which intensified the plasMonic absorption by Au NBP.
Abstract: Aimed at enhancing photocatalysis through intensifying light harvesting, a new photocatalyst was fabricated by infiltrating Au nanoparticles into TiO2 photonic crystals (TiO2 PC/Au NPs). Scanning electron microscopy (SEM) and transmission electron microscope (TEM) images showed that the Au NPs with average diameter around 15 nm were dispersed uniformly into the porous TiO2 material. The results of the transmittance spectra demonstrated that the light absorption by Au NPs was amplified after they were infiltrated into TiO2 240, which was fabricated from 240 nm polystyrene spheres. In the photocatalytic experiments of 2,4-dichlorophenol degradation under visible light (λ > 420 nm) irradiation, the kinetic constant using TiO2 240/Au NPs was 2.3 fold larger than that using TiO2 nanocrystalline/Au NPs (TiO2 NC/Au NPs). The excellent photocatalysis benefited from the cooperatively enhanced light harvesting owing to the localized surface plasmon resonance of Au NPs, which extended the light response spectra and ...

221 citations


Authors

Showing all 61205 results

NameH-indexPapersCitations
Yang Yang1712644153049
Yury Gogotsi171956144520
Hui Li1352982105903
Michael I. Posner134414104201
Anders Hagfeldt12960079912
Jian Zhou128300791402
Chao Zhang127311984711
Bin Wang126222674364
Chi Lin1251313102710
Tao Zhang123277283866
Bo Wang119290584863
Zhenyu Zhang118116764887
Liang Cheng116177965520
Anthony G. Fane11256540904
Xuelong Li110104446648
Network Information
Related Institutions (5)
Tsinghua University
200.5K papers, 4.5M citations

95% related

University of Science and Technology of China
101K papers, 2.4M citations

95% related

Zhejiang University
183.2K papers, 3.4M citations

93% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

93% related

Shanghai Jiao Tong University
184.6K papers, 3.4M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023167
2022836
20216,974
20206,457
20196,261
20185,375