scispace - formally typeset
Search or ask a question
Institution

Dalian University of Technology

EducationDalian, China
About: Dalian University of Technology is a education organization based out in Dalian, China. It is known for research contribution in the topics: Catalysis & Finite element method. The organization has 60890 authors who have published 71921 publications receiving 1188356 citations. The organization is also known as: Dàlián Lǐgōng Dàxué.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors considered the photocatalytic production of H2O2 from the reduction of O2 by semiconductor photocatalysts (e.g., graphitic carbon nitride, C3N4).
Abstract: Photocatalytic production of H2O2 from the reduction of O2 by semiconductor photocatalysts (e.g., graphitic carbon nitride, C3N4) has been regarded as an alternative for small-scale decentralized H...

202 citations

Journal ArticleDOI
TL;DR: A novel approach to estimate and predict the urban traffic congestion using floating car trajectory data efficiently using a new fuzzy comprehensive evaluation method in which the weights of multi-indexes are assigned according to the traffic flows.

202 citations

Journal ArticleDOI
TL;DR: A simple solvothermal method to fabricate metal-organic framework NH2-MIL-53(Al) crystals with controllable size and morphology just by altering the ratio of water in the DMF-water mixed solvent system without the addition of any surfactants or capping agents is presented.
Abstract: We present here a simple solvothermal method to fabricate metal–organic framework NH2-MIL-53(Al) crystals with controllable size and morphology just by altering the ratio of water in the DMF–water mixed solvent system without the addition of any surfactants or capping agents. With increasing the volume ratio of water in the mixed solvents, a series of NH2-MIL-53(Al) crystals with different sizes and morphologies were synthesized. The average size of the smallest crystal is 76 ± 20 nm, which provides us a simple and environmentally friendly way to prepare nanoscale MOFs. The largest BET surface area of these samples is 1882 m2 g−1 that is mainly contributed by its micropore surface area, and its corresponding micropore volume is 0.83 cm3 g−1, which have greatly extended its application in the fields of gas adsorption and postsynthetic modification. All these samples were characterized by SEM, XRD, N2 adsorption/desorption, TGA and FT-IR. Then a mechanism for the impact of the water ratio on the crystal size and morphology is presented and discussed.

202 citations

Journal ArticleDOI
TL;DR: In this article, the effect of printing orientation on the elasticity and yielding properties of 3D printed materials is evaluated with experiments and a transversely isotropic and anisotropic elastic and yielding model is proposed.
Abstract: 3D printing provides an innovative manufacturing method for composite materials. The mechanical property is vital for understanding the performance of 3D printed material and needs to be further studied. In this paper, the elasticity and yielding performance of acrylonitrile butadiene styrene (ABS) material created by 3D printing is investigated and the effect of printing orientation on mechanical property is quantitatively evaluated with experiments. Due to the layer by layer process procedure, 3D printed materials behave with anisotropic property. According to this characteristic, a transversely isotropic model is put forward in form of constitutive equations and is compared with isotropic model. Considering the influence of printing orientation, isotropic and anisotropic elastic and yielding model are established. The printed materials with different printing orientations are applied in uniaxial tensile tests. The material parameters, meaning the Young’s modulus, Possion’s ratio and yielding stress are determined by experiments. The results show that the printed ABS material has the Young’s modules as 2400 MPa, Poisson’s ratio as 0.37 and yielding stress as 26.84 MPa as isotropic material when the influence of printing orientation is neglected. Parameters for anisotropic model are also given and the model is recommended if the better precision concerning printing orientations is required. The obtained material parameters can be used in the mechanical simulation of 3D printed objects. The established isotropic and anisotropic models are basic findings to describe mechanical property of printed materials and can be expanded to other materials produced by 3D printing.

202 citations

Journal ArticleDOI
TL;DR: Mesoporous nanocast perovskites (NC-LaMnO3 and NC-LaFeO3) were synthesized by nanocasting technique using SBA-15 as a template and for the first time they were used in catalytic ozonation of 2-chlorophenol.
Abstract: Mesoporous nanocast perovskites (NC-LaMnO3 and NC-LaFeO3) were synthesized by nanocasting technique using SBA-15 as a template and for the first time they were used in catalytic ozonation of 2-chlorophenol. For the purpose of comparison, uncast counterpart perovskites (CA-LaMnO3 and CA-LaFeO3) as well as Mn3O4 and Fe2O3 were also prepared by conventional citric acid assisted route. Nanocast perovskites possessed high specific surface area and large pore dimensions than uncast perovskites. Catalytic activity in terms of TOC removal followed the order of NC-LaMnO3 > NC-LaFeO3 > CA-LaMnO3 > CA-LaFeO3 > Mn3O4 > Fe2O3 > O3 with 80, 68, 50, 43, 39, 33% and 25% respectively. A detailed study is conducted to discuss the mechanism of catalytic ozonation of selected NC-LaMnO3 perovskite by using organic and inorganic hydroxyl radical’s quenchers, FTIR, florescence spectroscopy, EPR, ATR-FTIR, XPS, LSV, H2O2 detection, Raman spectroscopy, TPR-H2, Rct value calculation, ozone utilization efficiency and ozone decomposition. It was found that hydroxyl radicals rather than surface peroxide, surface atomic oxygen, superoxide and singlet oxygen were the reactive oxygen species contributed to high catalytic activity. Moreover, high surface area as well as open porous structure of nanocast perovskites were believed to enhance the catalytic activity by surface reaction and easy access of reactants to the active sites.

201 citations


Authors

Showing all 61205 results

NameH-indexPapersCitations
Yang Yang1712644153049
Yury Gogotsi171956144520
Hui Li1352982105903
Michael I. Posner134414104201
Anders Hagfeldt12960079912
Jian Zhou128300791402
Chao Zhang127311984711
Bin Wang126222674364
Chi Lin1251313102710
Tao Zhang123277283866
Bo Wang119290584863
Zhenyu Zhang118116764887
Liang Cheng116177965520
Anthony G. Fane11256540904
Xuelong Li110104446648
Network Information
Related Institutions (5)
Tsinghua University
200.5K papers, 4.5M citations

95% related

University of Science and Technology of China
101K papers, 2.4M citations

95% related

Zhejiang University
183.2K papers, 3.4M citations

93% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

93% related

Shanghai Jiao Tong University
184.6K papers, 3.4M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023167
2022838
20216,974
20206,457
20196,261
20185,375