scispace - formally typeset
Search or ask a question
Institution

Davangere University

EducationDavangere, India
About: Davangere University is a education organization based out in Davangere, India. It is known for research contribution in the topics: Nanofluid & Heat transfer. The organization has 236 authors who have published 413 publications receiving 3673 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The epidemic prophecy for the novel coronavirus (2019-nCOV) epidemic in Wuhan, China is studied by using q-homotopy analysis transform method (q-HATM) and the results show that the used scheme is highly emphatic and easy to implementation for the system of nonlinear equations.
Abstract: 2019-nCOV epidemic is one of the greatest threat that the mortality faced since the World War-2 and most decisive global health calamity of the century. In this manuscript, we study the epidemic prophecy for the novel coronavirus (2019-nCOV) epidemic in Wuhan, China by using q-homotopy analysis transform method (q-HATM). We considered the reported case data to parameterise the model and to identify the number of unreported cases. A new analysis with the proposed epidemic 2019-nCOV model for unreported cases is effectuated. For the considered system exemplifying the model of coronavirus, the series solution is established within the frame of the Caputo derivative. The developed results are explained using figures which show the behaviour of the projected model. The results show that the used scheme is highly emphatic and easy to implementation for the system of nonlinear equations. Further, the present study can confirm the applicability and effect of fractional operators to real-world problems.

170 citations

Journal ArticleDOI
TL;DR: In this article, the thermal properties of AA7072-AA7075/water-based hybrid nanofluid over a curved stretching sheet using non-Fourier heat flux model were analyzed.

142 citations

Journal ArticleDOI
TL;DR: An effective, simple and eco-friendly method of ZnO-NP synthesis is described to evaluate its potential for various industrial and medical applications and the photocatalytic activity and biological applications of ZNO-NPs are evaluated.
Abstract: Biosynthesis of zinc oxide nanoparticles (ZnO-NPs) was achieved by utilizing the reducing and capping potential of leaf, stem and callus aqueous extracts of Mussaenda frondosa.The bioreduced ZnO-NPs were characterized using powder X-ray diffraction (XRD), ultraviolet–visible spectroscopy (UV–Vis spectroscopy), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), fourier transform infrared spectroscopy (FTIR) and dynamic light scattering (DLS) techniques. UV–visible spectra of ZnO-NPs showed a strong absorption peak at 370, 376 and 373 nm corresponding to the band gap energy of 3.33, 3.27 and 3.30 eV for ZnO-NPs obtained from leaf (L-ZnO-NP), stem (S-ZnO-NP) and callus (C-ZnO-NP) aqueous extracts, respectively. XRD analysis confirmed the formation of hexagonal wurtzite structures having an average grain size between 5 and 20 nm in diameter. FTIR spectra revealed the presence of stretching vibrations of –O–H, C–H, C–N, C = O groups involved in reduction and stabilization of nanoparticles. SEM images recognize the presence of spongy, spherical, porous agglomerated nanoparticles. DLS analysis and zeta potential values validated the stability of ZnO-NPs. The present investigation puts light on the photocatalytic activity and biological (antioxidant, anti-inflammatory, antidiabetic, antimicrobial, anticancerous) applications of ZnO-NPs. The current study is an attempt to describe an effective, simple and eco-friendly method of ZnO-NP synthesis and to evaluate its potential for various industrial and medical applications.

135 citations

Journal ArticleDOI
21 May 2020-Biology
TL;DR: The infection system of the novel coronavirus (2019-nCoV) with a nonlocal operator defined in the Caputo sense is investigated with the help of the fractional natural decomposition method (FNDM), which is based on the Adomian decomposition and natural transform methods.
Abstract: In this study, we investigate the infection system of the novel coronavirus (2019-nCoV) with a nonlocal operator defined in the Caputo sense. With the help of the fractional natural decomposition method (FNDM), which is based on the Adomian decomposition and natural transform methods, numerical results were obtained to better understand the dynamical structures of the physical behavior of 2019-nCoV. Such behaviors observe the general properties of the mathematical model of 2019-nCoV. This mathematical model is composed of data reported from the city of Wuhan, China.

134 citations


Network Information
Related Institutions (5)
Aligarh Muslim University
16.4K papers, 289K citations

83% related

Savitribai Phule Pune University
10.6K papers, 216K citations

82% related

Panjab University, Chandigarh
18.7K papers, 461K citations

81% related

VIT University
24.4K papers, 261.8K citations

81% related

Banaras Hindu University
23.9K papers, 464.6K citations

81% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202218
2021185
202095
201927
201818