scispace - formally typeset
Search or ask a question
Institution

DECHEMA

NonprofitFrankfurt am Main, Germany
About: DECHEMA is a nonprofit organization based out in Frankfurt am Main, Germany. It is known for research contribution in the topics: Corrosion & Oxide. The organization has 756 authors who have published 1307 publications receiving 25693 citations.
Topics: Corrosion, Oxide, Coating, Alloy, Catalysis


Papers
More filters
Journal ArticleDOI
TL;DR: It is reported that 2-methyltetrahydrofuran (2-MTHF) is a promising candidate to substitute DMSO or MTBE in lyase-catalyzed reactions, and may be a valuable (co)solvent, not only to tackle environmental concerns, but also in terms of practical, efficient biocatalysis.

79 citations

Journal ArticleDOI
C. Ehrenbeck1, K. Jüttner1
TL;DR: In this article, the ion conductivity and permselectivity of conducting polymer polypyrrole in dependence of the oxidation state were investigated. But the results were limited to a two-compartment measurement cell.

79 citations

Journal ArticleDOI
TL;DR: Using a genetic algorithm, 13 medium constituents and the temperature were varied to improve the bioconversion of l -phenylalanine ( l -phe) to 2-phenylethanol (2-PE) with Kluyveromyces marxianus CBS 600.
Abstract: Using a genetic algorithm, 13 medium constituents and the temperature were varied to improve the bioconversion of l -phenylalanine ( l -phe) to 2-phenylethanol (2-PE) with Kluyveromyces marxianus CBS 600. Within four generations plus an additional temperature screening, corresponding to 98 parallel experiments altogether, a maximum 2-PE concentration of 5.6 g/l, equivalent to an increase of 87% compared to the non-optimized medium was obtained. The vitamin content of the medium had to be raised significantly.

78 citations

Journal ArticleDOI
TL;DR: An integrated bioprocess for the production of the natural rose-like aroma compounds, 2-PE and 2-phenylethylacetate (2-PEAc), from L-phenylalanine (L-phe) with yeasts was investigated in this article.
Abstract: An integrated bioprocess for the production of the natural rose-like aroma compounds, 2-phenylethanol (2-PE) and 2-phenylethylacetate (2-PEAc), from L-phenylalanine (L-phe) with yeasts was investigated. The hydrophobicity of the products leads to product inhibition, which can be compensated by in situ product removal (ISPR). An organophilic pervaporation unit, equipped with a polyoctylmethylsiloxane (POMS) membrane, was coupled via a bypass to a bioreactor and proved to be a suitable technique for the in situ removal of high-boiling products from culture broth. With batch cultures of the thermotolerant yeast Kluyveromyces marxianus CBS 600 in a standard medium at 35 degrees C, the use of pervaporation resulted in a double 2-PE concentration (2.2 g/L) and 1.3 g/L 2-PEAc, which only accumulated transiently in low concentrations during cultivation without ISPR. Using a previously optimized medium, the variation of the temperature from 30 degrees C to 40 degrees C caused an increase in the total conversion yield from 63% to 79%, corresponding to total product concentrations of 5.23 and 5.85 g/L, respectively. In the 40 degrees C batch experiment, the volumetric productivity (2-PE + 2-PEAc) during the exponential phase was 5.2 mmol/L h. While for 2-PE, there is still potential for further optimization, the more hydrophobic 2-PEAc was nearly completely removed from the aqueous culture broth (enrichment factor >400), resulting in highly aroma-enriched permeates. Due to the temperature-correlated performance of the pervaporation, the bioconversion was still efficient even at 45 degrees C (conversion yield: 69%). Surprisingly, at 45 degrees C, the molar ratio of the two products inverted and 2-PEAc turned out to be the main product (4.0 g/L), which opens easy control of the reaction's selectivity by external means. Retrofitting the process with interim heating and cooling equipment to use different temperature levels for cultivation and pervaporation resulted in a decreased yield and product concentration caused by multiple stress factors. The medium composition affected the pervaporation efficiency with molasses acting detrimental.

77 citations

Journal ArticleDOI
Thomas Krieg1, Sonja Hüttmann1, Klaus-Michael Mangold1, Jens Schrader1, Dirk Holtmann1 
TL;DR: The versatile enzyme chloroperoxidase was used in a new reaction system, based on a gas diffusion electrode, for enzymatic chlorinations, sulfoxidations and oxidations, which is the first report on the combination of hydrogen peroxide production at a GDE with an enzyme reaction.

77 citations


Authors

Showing all 760 results

NameH-indexPapersCitations
Wolf B. Frommer10534530918
Michael W. Anderson10180863603
João Rocha93152149472
Martin Muhler7760625850
Michael Hunger6029511370
Ivars Neretnieks442247159
Michael Schütze403436311
Jens Schrader381294239
Roland Dittmeyer312063762
Lei Li291984003
Dirk Holtmann291073033
Lasse Greiner26741994
Klaus-Michael Mangold23571590
A. Rahmel23591967
Gerhard Kreysa22781305
Network Information
Related Institutions (5)
Bayer
49.5K papers, 673.8K citations

81% related

Karlsruhe Institute of Technology
82.1K papers, 2.1M citations

79% related

Forschungszentrum Jülich
35.6K papers, 994.1K citations

78% related

University of Stuttgart
56.3K papers, 1.3M citations

78% related

RWTH Aachen University
96.2K papers, 2.5M citations

77% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
20227
202145
202053
201949
201844