scispace - formally typeset
Search or ask a question
Institution

DECHEMA

NonprofitFrankfurt am Main, Germany
About: DECHEMA is a nonprofit organization based out in Frankfurt am Main, Germany. It is known for research contribution in the topics: Corrosion & Oxide. The organization has 756 authors who have published 1307 publications receiving 25693 citations.
Topics: Corrosion, Oxide, Coating, Alloy, Catalysis


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, cyclic voltammetry and coulometry combined with gravimetrical measurements and Electrochemical Impedance Spectroscopy (EIS) measurements on Pt/PMT-film electrodes were carried out in the monomere free propylene carbonate solution in dependence of the following parameters: poly(3-methylthiophene) film thickness l, supporting electrolyte concentration c, temperature T and polarisation potential E.

23 citations

Journal ArticleDOI
TL;DR: In this article, Nafion membranes were modified with a thin film of poly(3,4-ethylenedioxythiophene) (PEDOT) by a diffusion-controlled polymerization process using a two-compartment cell with the monomer EDOT on one side of the membrane and the oxidizing agent FeCl3 on the other side.
Abstract: Nafion 117 membranes were modified with a thin film of poly(3,4-ethylenedioxythiophene) (PEDOT) by a diffusion-controlled polymerization process using a two-compartment cell with the monomer EDOT on one side of the membrane and the oxidizing agent FeCl3 on the other side. The methanol permeability and ion conductivity of the composite PEDOT/Nafion membranes were measured as a function of temperature and polymerization time by DC and AC polarization measurements in four-electrode technique and permeation experiments in a diaphragm cell. These modified membranes have lower methanol permeability while maintaining adequate conductivity.

23 citations

Journal ArticleDOI
TL;DR: In this paper, a characterization of MCM-41 with respect to acidity and molecular sieve properties, with a view to using this mesoporous material in catalysis, is presented.

23 citations

Journal ArticleDOI
TL;DR: This work investigated the mediated bioelectrochemical conversion of p-xylene to 2,5-dimethylphenol by a P450 BM3 variant and were able to produce 2, 5-DMP electrochemically and showed that reduced cobalt sepulchrate reacts with the co-substrate oxygen.
Abstract: One of the most important obstacles to overcome in biocatalysis with monooxygenases is the enzyme's dependency on the costly redox cofactor NAD(P)H. Electrochemical regeneration systems, in which an electrode serves as electron donor, provide an alternative route to enzymatic redox reactions. Mediators are often used to accelerate electron transfer between electrode and enzyme. We investigated the mediated bioelectrochemical conversion of p-xylene to 2,5-dimethylphenol (2,5-DMP) by a P450 BM3 variant and were able to produce 2,5-DMP electrochemically. Due to the fact that mediator reduction is limited by the electrode surface a scale-up was performed. However, increasing the electrode surface area to reactor volume ratio led to a drastic increase in cathodic oxygen reduction, causing a drop in product formation. It was shown that reduced cobalt sepulchrate reacts with the co-substrate oxygen. Furthermore, the reportedly oxygen stable mediator [Cp*Rh(I)(bpy)H]+ was compared to cobalt sepulchrate. While its turnover frequency is of comparable magnitude to cobalt sepulchrate when transferring the electrons between electrode and enzyme, using NADP+ as intermediary between the mediator and the enzyme significantly increased the mediator's turnover frequency. The rhodium mediator [Cp*Rh(I)(bpy)H]+ does not appear to be significantly more oxygen stable.

23 citations

Journal ArticleDOI
TL;DR: The results provide a foundation for the development towards the application of carotenoid cleavage dioxygenases as in vitro biocatalysts for the production of norisoprenoids and apocarotenals fromcarotenoids.
Abstract: The influence of the solubility-enhancing fusion proteins glutathione-S-transferase (GST) and NusA on the heterologous expression and in vitro biocatalytic performance of the carotenoid cleavage dioxygenase AtCCD1 from Arabidopsis thaliana was investigated. A micellar dispersion of the water-insoluble model substrate β-apo-8′-carotenal in combination with Triton X-100 was used for the spectrophotometric in vitro assays. Specific activity in the cellular extract was twofold increased by the use of GST as a carrier protein, whereas it was decreased by 70% when fused with NusA. Reduced molar activity of the purified fusion proteins was observed, which could not be regained by proteolytic removal of the carrier protein. The addition of organic solvents in the form of short-chain aliphatic alcohols positively influenced the enzyme activity. Optimization of the reaction medium led to an 18-fold activation, and a clear correlation could be found between the organic solvent concentration required for maximum activation and the log P of the solvent. The results provide a foundation for the development towards the application of carotenoid cleavage dioxygenases as in vitro biocatalysts for the production of norisoprenoids and apocarotenals from carotenoids.

23 citations


Authors

Showing all 760 results

NameH-indexPapersCitations
Wolf B. Frommer10534530918
Michael W. Anderson10180863603
João Rocha93152149472
Martin Muhler7760625850
Michael Hunger6029511370
Ivars Neretnieks442247159
Michael Schütze403436311
Jens Schrader381294239
Roland Dittmeyer312063762
Lei Li291984003
Dirk Holtmann291073033
Lasse Greiner26741994
Klaus-Michael Mangold23571590
A. Rahmel23591967
Gerhard Kreysa22781305
Network Information
Related Institutions (5)
Bayer
49.5K papers, 673.8K citations

81% related

Karlsruhe Institute of Technology
82.1K papers, 2.1M citations

79% related

Forschungszentrum Jülich
35.6K papers, 994.1K citations

78% related

University of Stuttgart
56.3K papers, 1.3M citations

78% related

RWTH Aachen University
96.2K papers, 2.5M citations

77% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
20227
202145
202053
201949
201844