scispace - formally typeset
Search or ask a question
Institution

Deen Dayal Upadhyay Gorakhpur University

EducationGorakhpur, Uttar Pradesh, India
About: Deen Dayal Upadhyay Gorakhpur University is a education organization based out in Gorakhpur, Uttar Pradesh, India. It is known for research contribution in the topics: Thermal decomposition & Lymnaea acuminata. The organization has 1032 authors who have published 1591 publications receiving 21734 citations. The organization is also known as: Gorakhpur University.


Papers
More filters
Journal ArticleDOI
TL;DR: The molecular docking of taxane diterpenoids has been carried out with the tubulin alpha-beta dimer (1TUB) and refined microtubule structure (1JFF) using Glide-XP, in order to assess the potential of tubulin binding of these cytotoxic agents.
Abstract: Microtubules are formed from the molecules of tubulin, whose dynamics is important for many functions in a cell, the most dramatic of which is mitosis. Taxol is known to interact within a specific site on tubulin and also believed to block cell-cycle progression during mitosis by binding to and stabilizing microtubules. Along with the tremendous potential that taxol has shown as an anticancer drug, clinical problems exist with solubility, toxicity, and development of drug resistance. The crystal structure of taxane diterpenoids, namely, 10, 13-deacetyl-abeo-baccatin-IV (I), 5-acetyl-2-deacetoxydecinnamoyl-taxinine-0.29hydrate (II), 7, 9-dideacetyltaxayuntin (III), and Taxawallin-K (IV), are very similar to the taxol molecule. Considerable attention has been given to such molecules whose archetype is taxol but do not posses long aliphatic chains, to be developed as a substitute for taxol with fewer side effects. In the present work, the molecular docking of these taxane diterpenoids has been carried out with the tubulin alpha-beta dimer (1TUB) and refined microtubule structure (1JFF) using Glide-XP, in order to assess the potential of tubulin binding of these cytotoxic agents. Results show that all the ligands dock into the classical taxol binding site of tubulin. Taxol shows the best binding capabilities. On the basis of docking energy and interactions, apart from taxol, molecule II has a better tendency of binding with 1TUB while molecule I shows better binding capability with bovine tubulin 1JFF. To validate the binding capabilities, molecular dynamics (MD) simulations of the best docked complexes of ligands with 1JFF have been carried out for 15.0 ns using DESMOND. Average RMSD variations and time line study of interactions and contacts indicate that these complexes remain stable during the course of the dynamics. However, taxol and molecule II prevail over other taxoids.

38 citations

Journal ArticleDOI
TL;DR: In this article, the catalytic activities of the MTTMF nanocrystallites on thermal decomposition of ammonium perchlorate (AP) were investigated using thermogravimetric analysis (TG), differential scanning calorimetry (DSC), differential thermal analysis (DTA), and ignition delay measurements.

38 citations

Journal ArticleDOI
TL;DR: Thymol and [6]‐gingerol affects all the known neurotransmission mechanisms in the snail either separately or through a complex interaction between the different neurotransmitters, which may account for their toxicity to snails.
Abstract: In vivo exposure of Lymnaea acuminata to thymol and [6]-gingerol (active molluscicidal components of Trachyspermum ammi and Zingiber officinale, respectively) indicates that they significantly alter acetylcholinesterase, lactic dehydrogenase, succinic dehydrogenase and cyto-oxidase activity in the nervous ­tissue of snails. In vitro exposure showed that, except for acetylcholinesterase and lactic dehydrogenase, no significant changes were observed in cyto-oxidase and succinic dehydrogenase activity in the nervous tissue of L. acuminata. Sublethal exposure to thymol and [6]-gingerol reduced the levels of 5-hydroxytryptamine (5-HT) and dopamine (DA) in the nervous tissue of L. acuminata. There was, however, no significant change in the level of 5-hydroxy indol acetic acid (5-HIAA). Thymol and [6]-gingerol thus affects all the known neurotransmission mechanisms in the snail either separately or through a complex interaction between the different neurotransmitters. This may account for their toxicity to snails. Copyright © 1999 John Wiley & Sons, Ltd.

38 citations

Journal ArticleDOI
TL;DR: It was showed that the histopathological changes were caused in liver of rats by chlorpyrifos administration, mainly hepatocytic vacuolation, degeneration of hepatocytes and their nuclei, hyperchromatic and hypertrophied nuclei at earlier stage of treatment, sinusoidal dilation and focal necrosis.

37 citations

Journal ArticleDOI
TL;DR: Results confirm that C. citratus oil could be a natural alternative to commercial fungicide for control of fruit rotting fungi of stored grapes and show enhancement of shelf life up to 10 d.
Abstract: Thirty-five randomly collected samples of stored table grapes (Vitis vinifera L.) from different markets of Gorakhpur city, Uttar Pradesh, India, revealed occurrence of 11 types of fungi. Of which, Aspergillus flavus, Aspergillus niger, and Aspergillus ochraceus were dominant causing severe decay of grapes with 58%, 52%, and 67% incidence, respectively. On screening of 15 essential oils at 0.33 μL/mL, Cymbopogon citratus oil caused 100% mycelial inhibition against aforesaid dominant fungi. Oil was fungistatic at 0.29 μL/mL and exhibited broad fungitoxicity against other fruit rotting fungi associated with collected samples. C. citratus oil completely inhibited the growth and mycotoxin (AFB1 and OTA) secretion of the aflatoxigenic and ochratoxigenic strains of A. flavus, A. niger, and A. ochraceus at 0.8 μL/mL. E-Citral (52.9%) and Z-Citral (39.38%) were the major components of C. citratus oil during gas chromatography and gas chromatography-mass spectrometry analysis. Application of 200 and 300 μL of C. citratus oil on 1 kg of stored grapes showed enhancement of shelf life up to 10 d. The oil did not exhibit any phytotoxic effect on fruits. These results confirm that C. citratus oil could be a natural alternative to commercial fungicide for control of fruit rotting fungi of stored grapes.

37 citations


Authors

Showing all 1045 results

NameH-indexPapersCitations
Rudra Deo Tripathi571389640
Nawal Kishore Dubey5022910796
Harikesh Bahadur Singh463077372
Souvik Maiti432375759
Ajay Singh392568464
Alok C. Gupta391314052
Suman K Mishra382404989
Gurdip Singh361575173
Ram C. Mehrotra355066259
Nidhi Gupta352664786
Ajay K. Mishra342195050
Seema Mishra33794312
Narsingh Bahadur Singh331944062
Manish Naja321103383
Maya Shankar Singh312454261
Network Information
Related Institutions (5)
Guru Nanak Dev University
7.8K papers, 139.7K citations

86% related

Banaras Hindu University
23.9K papers, 464.6K citations

86% related

Aligarh Muslim University
16.4K papers, 289K citations

86% related

University of Delhi
36.4K papers, 666.9K citations

86% related

Panjab University, Chandigarh
18.7K papers, 461K citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20239
202216
2021118
202094
201965
201869