scispace - formally typeset
Search or ask a question

Showing papers by "Delft University of Technology published in 2017"


Journal ArticleDOI
TL;DR: This article conducted an extensive literature review, employing bibliometric analysis and snowballing techniques to investigate the state of the art in the field and synthesise the similarities, differences and relationships between both terms.

3,508 citations


Journal ArticleDOI
TL;DR: In an attempt to give an order of magnitude regarding CO2 valorization, the most important aspects of CO2 capture and green routes to produce H2 are summarized and economical aspects of the production of methanol and DME are critically assessed.
Abstract: The recent advances in the development of heterogeneous catalysts and processes for the direct hydrogenation of CO2 to formate/formic acid, methanol, and dimethyl ether are thoroughly reviewed, with special emphasis on thermodynamics and catalyst design considerations. After introducing the main motivation for the development of such processes, we first summarize the most important aspects of CO2 capture and green routes to produce H2. Once the scene in terms of feedstocks is introduced, we carefully summarize the state of the art in the development of heterogeneous catalysts for these important hydrogenation reactions. Finally, in an attempt to give an order of magnitude regarding CO2 valorization, we critically assess economical aspects of the production of methanol and DME and outline future research and development directions.

927 citations


Journal ArticleDOI
TL;DR: The role of catalysis in waste minimisation is discussed and illustrated with examples of green catalytic processes such as aerobic oxidations of alcohols, catalytic C-C bond formation and olefin metathesis as discussed by the authors.

798 citations


Journal ArticleDOI
TL;DR: The potential of metal–organic frameworks (MOFs) and covalent organic frameworks (COFs) as platforms for the development of heterogeneous single-site catalysts is reviewed thoroughly.
Abstract: Heterogeneous single-site catalysts consist of isolated, well-defined, active sites that are spatially separated in a given solid and, ideally, structurally identical. In this review, the potential of metal–organic frameworks (MOFs) and covalent organic frameworks (COFs) as platforms for the development of heterogeneous single-site catalysts is reviewed thoroughly. In the first part of this article, synthetic strategies and progress in the implementation of such sites in these two classes of materials are discussed. Because these solids are excellent playgrounds to allow a better understanding of catalytic functions, we highlight the most important recent advances in the modelling and spectroscopic characterization of single-site catalysts based on these materials. Finally, we discuss the potential of MOFs as materials in which several single-site catalytic functions can be combined within one framework along with their potential as powerful enzyme-mimicking materials. The review is wrapped up with our personal vision on future research directions.

785 citations


Journal ArticleDOI
Lianne Schmaal1, Derrek P. Hibar2, Philipp G. Sämann3, Geoffrey B. Hall4, Bernhard T. Baune5, Neda Jahanshad2, Joshua W. Cheung2, T.G.M. van Erp6, Daniel Bos7, M. A. Ikram7, Meike W. Vernooij7, Wiro J. Niessen7, Wiro J. Niessen8, Henning Tiemeier9, Henning Tiemeier7, A. Hofman7, Katharina Wittfeld10, Hans-Jörgen Grabe10, Hans-Jörgen Grabe11, Deborah Janowitz11, Robin Bülow11, M Selonke11, Henry Völzke11, Dominik Grotegerd12, Udo Dannlowski12, Udo Dannlowski13, Volker Arolt12, Nils Opel12, Walter Heindel12, Harald Kugel12, D. Hoehn3, Michael Czisch3, Baptiste Couvy-Duchesne14, Baptiste Couvy-Duchesne15, Miguel E. Rentería14, Lachlan T. Strike15, Margaret J. Wright15, Natalie T. Mills15, Natalie T. Mills14, G.I. de Zubicaray16, Katie L. McMahon15, Sarah E. Medland14, Nicholas G. Martin14, Nathan A. Gillespie17, Roberto Goya-Maldonado18, Oliver Gruber19, Bernd Krämer19, Sean N. Hatton20, Jim Lagopoulos20, Ian B. Hickie20, Thomas Frodl21, Thomas Frodl22, Angela Carballedo21, Eva-Maria Frey23, L. S. van Velzen1, B.W.J.H. Penninx1, M-J van Tol24, N.J. van der Wee25, Christopher G. Davey26, Ben J. Harrison26, Benson Mwangi27, Bo Cao27, Jair C. Soares27, Ilya M. Veer28, Henrik Walter28, D. Schoepf29, Bartosz Zurowski30, Carsten Konrad13, Elisabeth Schramm31, Claus Normann31, Knut Schnell19, Matthew D. Sacchet32, Ian H. Gotlib32, Glenda MacQueen33, Beata R. Godlewska34, Thomas Nickson35, Andrew M. McIntosh35, Andrew M. McIntosh36, Martina Papmeyer35, Martina Papmeyer37, Heather C. Whalley35, Jeremy Hall38, Jeremy Hall35, J.E. Sussmann35, Meng Li39, Martin Walter40, Martin Walter39, Lyubomir I. Aftanas, Ivan Brack, Nikolay A. Bokhan41, Nikolay A. Bokhan42, Nikolay A. Bokhan43, Paul M. Thompson2, Dick J. Veltman1 
TL;DR: In this article, the authors present the largest ever worldwide study by the ENIGMA (Enhancing Neuro Imaging Genetics through Meta-Analysis) Major Depressive Disorder Working Group on cortical structural alterations in MDD.
Abstract: The neuro-anatomical substrates of major depressive disorder (MDD) are still not well understood, despite many neuroimaging studies over the past few decades. Here we present the largest ever worldwide study by the ENIGMA (Enhancing Neuro Imaging Genetics through Meta-Analysis) Major Depressive Disorder Working Group on cortical structural alterations in MDD. Structural T1-weighted brain magnetic resonance imaging (MRI) scans from 2148 MDD patients and 7957 healthy controls were analysed with harmonized protocols at 20 sites around the world. To detect consistent effects of MDD and its modulators on cortical thickness and surface area estimates derived from MRI, statistical effects from sites were meta-analysed separately for adults and adolescents. Adults with MDD had thinner cortical gray matter than controls in the orbitofrontal cortex (OFC), anterior and posterior cingulate, insula and temporal lobes (Cohen's d effect sizes: -0.10 to -0.14). These effects were most pronounced in first episode and adult-onset patients (>21 years). Compared to matched controls, adolescents with MDD had lower total surface area (but no differences in cortical thickness) and regional reductions in frontal regions (medial OFC and superior frontal gyrus) and primary and higher-order visual, somatosensory and motor areas (d: -0.26 to -0.57). The strongest effects were found in recurrent adolescent patients. This highly powered global effort to identify consistent brain abnormalities showed widespread cortical alterations in MDD patients as compared to controls and suggests that MDD may impact brain structure in a highly dynamic way, with different patterns of alterations at different stages of life.

728 citations


Journal ArticleDOI
TL;DR: A critical assessment of the often exaggerated benefits of blockchain technology found in the literature is presented and a shift from a technology-driven to need-driven approach in which blockchain applications are customized to ensure a fit with requirements of administrative processes is pleaded.

686 citations


Journal ArticleDOI
TL;DR: The basic principles, advantages and limitations of the most common AFM bioimaging modes are reviewed, including the popular contact and dynamic modes, as well as recently developed modes such as multiparametric, molecular recognition, multifrequency and high-speed imaging.
Abstract: Atomic force microscopy (AFM) is a powerful, multifunctional imaging platform that allows biological samples, from single molecules to living cells, to be visualized and manipulated. Soon after the instrument was invented, it was recognized that in order to maximize the opportunities of AFM imaging in biology, various technological developments would be required to address certain limitations of the method. This has led to the creation of a range of new imaging modes, which continue to push the capabilities of the technique today. Here, we review the basic principles, advantages and limitations of the most common AFM bioimaging modes, including the popular contact and dynamic modes, as well as recently developed modes such as multiparametric, molecular recognition, multifrequency and high-speed imaging. For each of these modes, we discuss recent experiments that highlight their unique capabilities.

649 citations


Proceedings ArticleDOI
19 Oct 2017
TL;DR: Comprehensive experimental results show that the proposed ACMR method is superior in learning effective subspace representation and that it significantly outperforms the state-of-the-art cross-modal retrieval methods.
Abstract: Cross-modal retrieval aims to enable flexible retrieval experience across different modalities (e.g., texts vs. images). The core of cross-modal retrieval research is to learn a common subspace where the items of different modalities can be directly compared to each other. In this paper, we present a novel Adversarial Cross-Modal Retrieval (ACMR) method, which seeks an effective common subspace based on adversarial learning. Adversarial learning is implemented as an interplay between two processes. The first process, a feature projector, tries to generate a modality-invariant representation in the common subspace and to confuse the other process, modality classifier, which tries to discriminate between different modalities based on the generated representation. We further impose triplet constraints on the feature projector in order to minimize the gap among the representations of all items from different modalities with same semantic labels, while maximizing the distances among semantically different images and texts. Through the joint exploitation of the above, the underlying cross-modal semantic structure of multimedia data is better preserved when this data is projected into the common subspace. Comprehensive experimental results on four widely used benchmark datasets show that the proposed ACMR method is superior in learning effective subspace representation and that it significantly outperforms the state-of-the-art cross-modal retrieval methods.

641 citations


Journal ArticleDOI
TL;DR: The review shows that first-order impacts on road capacity, fuel efficiency, emissions, and accidents risk are expected to be beneficial and the balance between the short-term benefits and long-term impacts of vehicle automation remains an open question.

607 citations


Journal ArticleDOI
TL;DR: Experimental and theoretical results indicate that the synergetic effect between Zn and Zr sites results in the excellent performance of the ZnO-ZrO2 solid solution catalyst, which can achieve methanol selectivity of up to 86 to 91% with CO2 single-pass conversion of more than 10% under reaction conditions.
Abstract: Although methanol synthesis via CO hydrogenation has been industrialized, CO2 hydrogenation to methanol still confronts great obstacles of low methanol selectivity and poor stability, particularly for supported metal catalysts under industrial conditions. We report a binary metal oxide, ZnO-ZrO2 solid solution catalyst, which can achieve methanol selectivity of up to 86 to 91% with CO2 single-pass conversion of more than 10% under reaction conditions of 5.0 MPa, 24,000 ml/(g hour), H2/CO2 = 3:1 to 4:1, 320° to 315°C. Experimental and theoretical results indicate that the synergetic effect between Zn and Zr sites results in the excellent performance. The ZnO-ZrO2 solid solution catalyst shows high stability for at least 500 hours on stream and is also resistant to sintering at higher temperatures. Moreover, no deactivation is observed in the presence of 50 ppm SO2 or H2S in the reaction stream.

563 citations


Journal ArticleDOI
TL;DR: This review paper provides an overview of the current state of research and development of mainstream PN/A process and critically analyzes the bottlenecks for its full-scale application.
Abstract: Driven by energy neutral/positive of wastewater treatment plants, significant efforts have been made on the research and development of mainstream partial nitritation and anaerobic ammonium oxidation (anammox) (PN/A) (deammonification) process since the early 2010s. To date, feasibility of mainstream PN/A process has been demonstrated and proven by experimental results at various scales although with the low loading rates and elevated nitrogen concentration in the effluent at low temperatures (15–10 °C). This review paper provides an overview of the current state of research and development of mainstream PN/A process and critically analyzes the bottlenecks for its full-scale application. The paper discusses the following: (i) the current status of research and development of mainstream PN/A process; (ii) the interactions among aerobic ammonium-oxidizing bacteria, aerobic nitrite-oxidizing bacteria, anammox bacteria, and heterotrophic bacteria; (iii) the suppression of aerobic nitrite-oxidizing bacteria; (iv) process and bioreactors; and (v) suggested further studies including efficient and robust carbon concentrating pretreatment, deepening of understanding competition between autotrophic nitrogen-converting organisms, intensification of biofilm anammox activity, reactor design, and final polishing.

Journal ArticleDOI
TL;DR: This review surveys entropic uncertainty relations that capture Heisenberg’s idea that the results of incompatible measurements are impossible to predict, covering both finite- and infinite-dimensional measurements.
Abstract: Heisenberg’s uncertainty principle forms a fundamental element of quantum mechanics. Uncertainty relations in terms of entropies were initially proposed to deal with conceptual shortcomings in the original formulation of the uncertainty principle and, hence, play an important role in quantum foundations. More recently, entropic uncertainty relations have emerged as the central ingredient in the security analysis of almost all quantum cryptographic protocols, such as quantum key distribution and two-party quantum cryptography. This review surveys entropic uncertainty relations that capture Heisenberg’s idea that the results of incompatible measurements are impossible to predict, covering both finite- and infinite-dimensional measurements. These ideas are then extended to incorporate quantum correlations between the observed object and its environment, allowing for a variety of recent, more general formulations of the uncertainty principle. Finally, various applications are discussed, ranging from entanglement witnessing to wave-particle duality to quantum cryptography.

Journal ArticleDOI
TL;DR: Rationally designed and additively manufactured porous metallic biomaterials based on four different types of triply periodic minimal surfaces that mimic the properties of bone to an unprecedented level of multi-physics detail exhibit an interesting combination of topological, mechanical, and mass transport properties.

Journal ArticleDOI
29 Jun 2017
TL;DR: In this paper, the authors define a set of attributes through a literature review, which is then used to describe selected mobility as a service (MaaS) schemes and existing applications, and examine the potential implications of the identified core characteristics of the service on the following three areas of transport practices.
Abstract: Mobility as a Service (MaaS) is a recent innovative transport concept, anticipated to induce significant changes in the current transport practices. However, there is ambiguity surrounding the concept; it is uncertain what are the core characteristics of MaaS and in which way they can be addressed. Further, there is a lack of an assessment framework to classify their unique characteristics in a systematic manner, even though several MaaS schemes have been implemented around the world. In this study, we define this set of attributes through a literature review, which is then used to describe selected MaaS schemes and existing applications. We also examine the potential implications of the identified core characteristics of the service on the following three areas of transport practices: travel demand modelling, a supply-side analysis, and designing business model. Finally, we propose the necessary enhancements needed to deliver such an innovative service like MaaS, by establishing the state of art in those fields.

Journal ArticleDOI
TL;DR: It is found that methods that either take prior information into account using learning strategies or analyze cells in a global spatiotemporal video context performed better than other methods under the segmentation and tracking scenarios included in the Cell Tracking Challenge.
Abstract: We present a combined report on the results of three editions of the Cell Tracking Challenge, an ongoing initiative aimed at promoting the development and objective evaluation of cell segmentation and tracking algorithms. With 21 participating algorithms and a data repository consisting of 13 data sets from various microscopy modalities, the challenge displays today's state-of-the-art methodology in the field. We analyzed the challenge results using performance measures for segmentation and tracking that rank all participating methods. We also analyzed the performance of all of the algorithms in terms of biological measures and practical usability. Although some methods scored high in all technical aspects, none obtained fully correct solutions. We found that methods that either take prior information into account using learning strategies or analyze cells in a global spatiotemporal video context performed better than other methods under the segmentation and tracking scenarios included in the challenge.

Journal ArticleDOI
17 Feb 2017-Science
TL;DR: To understand how these components coordinate to divide cells, visualized their movements relative to the dynamics of cell wall synthesis during cytokinesis and found that the division septum was built at discrete sites that moved around the division plane.
Abstract: The mechanism by which bacteria divide is not well understood. Cell division is mediated by filaments of FtsZ and FtsA (FtsAZ) that recruit septal peptidoglycan-synthesizing enzymes to the division site. To understand how these components coordinate to divide cells, we visualized their movements relative to the dynamics of cell wall synthesis during cytokinesis. We found that the division septum was built at discrete sites that moved around the division plane. FtsAZ filaments treadmilled circumferentially around the division ring and drove the motions of the peptidoglycan-synthesizing enzymes. The FtsZ treadmilling rate controlled both the rate of peptidoglycan synthesis and cell division. Thus, FtsZ treadmilling guides the progressive insertion of new cell wall by building increasingly smaller concentric rings of peptidoglycan to divide the cell.

Journal ArticleDOI
TL;DR: In this article, the authors identify factors influencing decision-making based on big data using a case study and show that taking advantage of big data is an evolutionary process in which the gradually understanding of the potential of Big Data and the routinization of processes plays a crucial role.

Journal ArticleDOI
TL;DR: In this article, the authors focus on the topology-property relationship in three main classes of auxetic metamaterials, namely re-entrant, chiral, and rotating (semi-) rigid structures.
Abstract: The surge of interest in so-called “designer materials” during the last few years together with recent advances in additive manufacturing (3D printing) techniques that enable fabrication of materials with arbitrarily complex nano/micro-architecture have attracted increasing attention to the concept of mechanical metamaterials. Owing to their rationally designed nano/micro-architecture, mechanical metamaterials exhibit unusual properties at the macro-scale. These unusual mechanical properties could be exploited for the development of materials with advanced functionalities, with applications in soft robotics, biomedicine, soft electronics, acoustic cloaking, etc. Auxetic mechanical metamaterials are identified by a negative Poisson's ratio and are perhaps the most widely studied type of mechanical metamaterials. Similar to other types of mechanical metamaterials, the negative Poisson's ratio of auxetics is generally a direct consequence of the topology of their nano/micro-architecture. This paper therefore focuses on the topology–property relationship in three main classes of auxetic metamaterials, namely re-entrant, chiral, and rotating (semi-) rigid structures. While the deformation mechanisms in the above-mentioned types of structures and their relationship with the large-scale mechanical properties receive most attention, the emerging concepts in design of auxetics such as the use of instability in soft matter and origami-based structures are discussed as well. Furthermore, the data available in the literature regarding the elastic properties of auxetic mechanical metamaterials are systematically analyzed to identify the spread of Young's modulus–Poisson's ratio duos achieved in the auxetic materials developed to date.

Journal ArticleDOI
TL;DR: A dopant compensation in alloyed OIHP single crystals is reported to overcome limitations of device noise and charge collection, enabling γ-ray spectrum collection at room temperature.
Abstract: Organic–inorganic halide perovskites (OIHPs) bring an unprecedented opportunity for radiation detection with their defect-tolerance nature, large mobility–lifetime product, and simple crystal growth from solution. Here we report a dopant compensation in alloyed OIHP single crystals to overcome limitations of device noise and charge collection, enabling γ-ray spectrum collection at room temperature. CH3NH3PbBr3 and CH3NH3PbCl3 are found to be p-type and n-type doped, respectively, whereas dopant-compensated CH3NH3PbBr2.94Cl0.06 alloy has over tenfold improved bulk resistivity of 3.6 × 109 Ω cm. Alloying also increases the hole mobility to 560 cm2 V−1 s−1, yielding a high mobility–lifetime product of 1.8 × 10−2 cm2 V−1. The use of a guard ring electrode in the detector reduces the crystal surface leakage current and device dark current. A distinguishable 137Cs energy spectrum with comparable or better resolution than standard scintillator detectors is collected under a small electric field of 1.8 V mm−1 at room temperature. Hybrid organic–inorganic perovskite single crystals with optimized combination of Cl and Br ions are used to fabricate γ-ray detectors operating at room temperature and competing with the performance of sodium iodide scintillators.

Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive review of studies on consumer preferences for electric vehicles, aiming to better inform policy-makers and give direction to further research, and discuss a research agenda to improve EV consumer preference studies and give recommendations for further research.

Journal ArticleDOI
TL;DR: The aim of this tutorial is to highlight a novel chapter of control theory, dealing with applications to social systems, to the attention of the broad research community.

Journal ArticleDOI
TL;DR: There is a fundamental distinction to be made between eco-design and circular product design and a set of new concepts and definitions are developed, starting from a redefinition of product lifetime and introducing new terms such as presource and recovery horizon.
Abstract: Summary In a circular economy (CE), the economic and environmental value of materials is preserved for as long as possible by keeping them in the economic system, either by lengthening the life of the products formed from them or by looping them back in the system to be reused. The notion of waste no longer exists in a CE, because products and materials are, in principle, reused and cycled indefinitely. Taking this description as a starting point, the article asks which guiding principles, design strategies, and methods are required for circular product design and to what extent these differ from the principles, strategies, and methods of eco-design. The article argues that there is a fundamental distinction to be made between eco-design and circular product design and proceeds to develop, based on an extensive literature review, a set of new concepts and definitions, starting from a redefinition of product lifetime and introducing new terms such as presource and recovery horizon. The article then takes Walter Stahel's Inertia Principle as the guiding principle in circular product design and develops a typology of approaches for Design for Product Integrity, with a focus on tangible durable consumer products. The newly developed typology contributes to a deeper understanding of the CE as a concept and informs the discussion on the role of product design in a CE.

Journal ArticleDOI
TL;DR: In this paper, a self-healing superhydrophobic coating based on dual actions by the corrosion inhibitor benzotriazole (BTA) and an epoxy-based shape memory polymer (SMP) was introduced.
Abstract: This work introduces a new self-healing superhydrophobic coating based on dual actions by the corrosion inhibitor benzotriazole (BTA) and an epoxy-based shape memory polymer (SMP). Damage to the surface morphology (e.g., crushed areas and scratches) and the corresponding superhydrophobicity are shown to be rapidly healed through a simple heat treatment at 60 °C for 20 min. Electrochemical impedance spectroscopy (EIS) and scanning electrochemical microscopy (SECM) were used to study the anti-corrosion performance of the scratched and the healed superhydrophobic coatings immersed in a 3.5 wt% NaCl solution. The results revealed that the anti-corrosion performance of the scratched coatings was improved upon the incorporation of BTA. After the heat treatment, the scratched superhydrophobic coatings exhibited excellent recovery of their anti-corrosion performance, which is attributed to the closure of the scratch by the shape memory effect and to the improved inhibition efficiency of BTA. Furthermore, we found that the pre-existing corrosion product inside the coating scratch could hinder the scratch closure by the shape memory effect and reduce the coating adhesion in the scratched region. However, the addition of BTA effectively suppressed the formation of corrosion products and enhanced the self-healing and adhesion performance under these conditions. Importantly, we also demonstrated that these coatings can be autonomously healed within 1 h in an outdoor environment using sunlight as the heat source.

Journal ArticleDOI
TL;DR: A unified model of e-government adoption (UMEGA) is developed and validated using data gathered from 377 respondents from seven selected cities in India, indicating that the proposed unified model outperforms all other theoretical models, explaining the highest variance on behavioral intention, acceptable levels of fit indices, and significant relationships for each of the seven hypotheses.

Journal ArticleDOI
07 Apr 2017-Science
TL;DR: Using electrolytic gating, this work demonstrates all-printed, vertically stacked transistors with graphene source, drain, and gate electrodes, a transition metal dichalcogenide channel, and a boron nitride separator, all formed from nanosheet networks.
Abstract: All-printed transistors consisting of interconnected networks of various types of two-dimensional nanosheets are an important goal in nanoscience. Using electrolytic gating, we demonstrate all-printed, vertically stacked transistors with graphene source, drain, and gate electrodes, a transition metal dichalcogenide channel, and a boron nitride (BN) separator, all formed from nanosheet networks. The BN network contains an ionic liquid within its porous interior that allows electrolytic gating in a solid-like structure. Nanosheet network channels display on:off ratios of up to 600, transconductances exceeding 5 millisiemens, and mobilities of >0.1 square centimeters per volt per second. Unusually, the on-currents scaled with network thickness and volumetric capacitance. In contrast to other devices with comparable mobility, large capacitances, while hindering switching speeds, allow these devices to carry higher currents at relatively low drive voltages.

Journal ArticleDOI
TL;DR: In this article, the authors proposed a framework for investigating the social sustainability of supply chains in manufacturing companies, and a sample of 38 experts was used to evaluate and prioritize social sustainability criteria, using a multi-criteria decision-making method called the best worst method.
Abstract: A truly sustainable organization needs to take the economic, environmental and social dimensions of sustainability into account. Although the economic and environmental dimensions of sustainability have been examined by many scholars and practitioners, thus far, the social dimension has been received less attention in literature and in practice, in particular in developing countries. Social sustainability enables other sustainability initiatives and overlooking this dimension can have a serious adverse impact across supply chains. To address this issue, this study proposes a framework for investigating the social sustainability of supply chains in manufacturing companies. To show the applicability and efficiency of the proposed framework, a sample of 38 experts was used to evaluate and prioritize social sustainability criteria, using a multi-criteria decision-making method called the ‘best worst method’ (BWM). The criteria are ranked according to their average weight obtained through BWM. The respondents view ‘contractual stakeholders influence’ as the most important social sustainability criterion. The results of this study help industry managers, decision-makers and practitioners decide where to focus their attention during the implementation stage, to increase social sustainability in their organizational supply chain and move towards sustainable development.

Journal ArticleDOI
TL;DR: This work provides a new framework to understand the optoelectronic properties of metal halide perovskites and analyse spectroscopic data and finds that second-order electron-hole recombination of photo-excited charges is retarded at lower temperature.
Abstract: Time-resolved photo-conductance and microwave conductance investigations reveal that methylammonium lead iodide perovskites have an indirect bandgap at temperatures relevant to photovoltaic applications.

Journal ArticleDOI
TL;DR: In this article, it is shown that transitions in microstructure, texture, and properties in fabricated Inconel 718 functionally graded components can be obtained at relatively small or large length scales, depending upon the functional gradient desired in a particular application.

Journal ArticleDOI
TL;DR: In this paper, the relevance of informal farmer knowledge and learning practices in constructing alternative pathways in sustainable agriculture and strengthening agricultural resilience is explored, based on 11 case studies carried out within the international RETHINK research programme.

Journal ArticleDOI
TL;DR: In this paper, the authors classified ship propulsion topologies into combustion, electrochemical, stored and hybrid power supply, and analyzed which control strategies can improve performance of hybrid systems for future smart and autonomous ships and concluded that a combination of torque, angle of attack, and Model Predictive Control with dynamic settings could improve performance.