scispace - formally typeset
Search or ask a question

Denver Health Medical Center

HealthcareDenver, Colorado, United States
About: Denver Health Medical Center is a healthcare organization based out in Denver, Colorado, United States. It is known for research contribution in the topics: Emergency department & Population. The organization has 1431 authors who have published 2825 publications receiving 93695 citations. The organization is also known as: Denver General Hospital & Denver Health.

More filters
Journal ArticleDOI
TL;DR: A consensus committee of 68 international experts representing 30 international organizations was convened in 2008 to provide an update to the "Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock".
Abstract: To provide an update to the “Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock,” last published in 2008. A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict of interest policy was developed at the onset of the process and enforced throughout. The entire guidelines process was conducted independent of any industry funding. A stand-alone meeting was held for all subgroup heads, co- and vice-chairs, and selected individuals. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. The authors were advised to follow the principles of the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations as strong (1) or weak (2). The potential drawbacks of making strong recommendations in the presence of low-quality evidence were emphasized. Recommendations were classified into three groups: (1) those directly targeting severe sepsis; (2) those targeting general care of the critically ill patient and considered high priority in severe sepsis; and (3) pediatric considerations. Key recommendations and suggestions, listed by category, include: early quantitative resuscitation of the septic patient during the first 6 h after recognition (1C); blood cultures before antibiotic therapy (1C); imaging studies performed promptly to confirm a potential source of infection (UG); administration of broad-spectrum antimicrobials therapy within 1 h of the recognition of septic shock (1B) and severe sepsis without septic shock (1C) as the goal of therapy; reassessment of antimicrobial therapy daily for de-escalation, when appropriate (1B); infection source control with attention to the balance of risks and benefits of the chosen method within 12 h of diagnosis (1C); initial fluid resuscitation with crystalloid (1B) and consideration of the addition of albumin in patients who continue to require substantial amounts of crystalloid to maintain adequate mean arterial pressure (2C) and the avoidance of hetastarch formulations (1B); initial fluid challenge in patients with sepsis-induced tissue hypoperfusion and suspicion of hypovolemia to achieve a minimum of 30 mL/kg of crystalloids (more rapid administration and greater amounts of fluid may be needed in some patients (1C); fluid challenge technique continued as long as hemodynamic improvement is based on either dynamic or static variables (UG); norepinephrine as the first-choice vasopressor to maintain mean arterial pressure ≥65 mmHg (1B); epinephrine when an additional agent is needed to maintain adequate blood pressure (2B); vasopressin (0.03 U/min) can be added to norepinephrine to either raise mean arterial pressure to target or to decrease norepinephrine dose but should not be used as the initial vasopressor (UG); dopamine is not recommended except in highly selected circumstances (2C); dobutamine infusion administered or added to vasopressor in the presence of (a) myocardial dysfunction as suggested by elevated cardiac filling pressures and low cardiac output, or (b) ongoing signs of hypoperfusion despite achieving adequate intravascular volume and adequate mean arterial pressure (1C); avoiding use of intravenous hydrocortisone in adult septic shock patients if adequate fluid resuscitation and vasopressor therapy are able to restore hemodynamic stability (2C); hemoglobin target of 7–9 g/dL in the absence of tissue hypoperfusion, ischemic coronary artery disease, or acute hemorrhage (1B); low tidal volume (1A) and limitation of inspiratory plateau pressure (1B) for acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure (PEEP) in ARDS (1B); higher rather than lower level of PEEP for patients with sepsis-induced moderate or severe ARDS (2C); recruitment maneuvers in sepsis patients with severe refractory hypoxemia due to ARDS (2C); prone positioning in sepsis-induced ARDS patients with a Pao 2/Fio 2 ratio of ≤100 mm Hg in facilities that have experience with such practices (2C); head-of-bed elevation in mechanically ventilated patients unless contraindicated (1B); a conservative fluid strategy for patients with established ARDS who do not have evidence of tissue hypoperfusion (1C); protocols for weaning and sedation (1A); minimizing use of either intermittent bolus sedation or continuous infusion sedation targeting specific titration endpoints (1B); avoidance of neuromuscular blockers if possible in the septic patient without ARDS (1C); a short course of neuromuscular blocker (no longer than 48 h) for patients with early ARDS and a Pao 2/Fi o 2 180 mg/dL, targeting an upper blood glucose ≤180 mg/dL (1A); equivalency of continuous veno-venous hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1B); use of stress ulcer prophylaxis to prevent upper gastrointestinal bleeding in patients with bleeding risk factors (1B); oral or enteral (if necessary) feedings, as tolerated, rather than either complete fasting or provision of only intravenous glucose within the first 48 h after a diagnosis of severe sepsis/septic shock (2C); and addressing goals of care, including treatment plans and end-of-life planning (as appropriate) (1B), as early as feasible, but within 72 h of intensive care unit admission (2C). Recommendations specific to pediatric severe sepsis include: therapy with face mask oxygen, high flow nasal cannula oxygen, or nasopharyngeal continuous PEEP in the presence of respiratory distress and hypoxemia (2C), use of physical examination therapeutic endpoints such as capillary refill (2C); for septic shock associated with hypovolemia, the use of crystalloids or albumin to deliver a bolus of 20 mL/kg of crystalloids (or albumin equivalent) over 5–10 min (2C); more common use of inotropes and vasodilators for low cardiac output septic shock associated with elevated systemic vascular resistance (2C); and use of hydrocortisone only in children with suspected or proven “absolute”’ adrenal insufficiency (2C). Strong agreement existed among a large cohort of international experts regarding many level 1 recommendations for the best care of patients with severe sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for this important group of critically ill patients.

6,283 citations

Journal ArticleDOI
TL;DR: Episodic antiretroviral therapy guided by the CD4+ count significantly increased the risk of opportunistic disease or death from any cause, as compared with continuous antireteviral therapy, largely as a consequence of lowering theCD4+ cell count and increasing the viral load.
Abstract: Methods We randomly assigned persons infected with HIV who had a CD4+ cell count of more than 350 per cubic millimeter to the continuous use of antiretroviral therapy (the viral suppression group) or the episodic use of antiretroviral therapy (the drug conservation group). Episodic use involved the deferral of therapy until the CD4+ count decreased to less than 250 per cubic millimeter and then the use of therapy until the CD4+ count increased to more than 350 per cubic millimeter. The primary end point was the development of an opportunistic disease or death from any cause. An important secondary end point was major cardiovascular, renal, or hepatic disease. Results A total of 5472 participants (2720 assigned to drug conservation and 2752 to viral suppression) were followed for an average of 16 months before the protocol was modified for the drug conservation group. At baseline, the median and nadir CD4+ counts were 597 per cubic millimeter and 250 per cubic millimeter, respectively, and 71.7% of participants had plasma HIV RNA levels of 400 copies or less per milliliter. Opportunistic disease or death from any cause occurred in 120 participants (3.3 events per 100 person-years) in the drug conservation group and 47 participants (1.3 per 100 person-years) in the viral suppression group (hazard ratio for the drug conservation group vs. the viral suppression group, 2.6; 95% confidence interval [CI], 1.9 to 3.7; P<0.001). Hazard ratios for death from any cause and for major cardiovascular, renal, and hepatic disease were 1.8 (95% CI, 1.2 to 2.9; P = 0.007) and 1.7 (95% CI, 1.1 to 2.5; P = 0.009), respectively. Adjustment for the latest CD4+ count and HIV RNA level (as time-updated covariates) reduced the hazard ratio for the primary end point from 2.6 to 1.5 (95% CI, 1.0 to 2.1). Conclusions Episodic antiretroviral therapy guided by the CD4+ count, as used in our study, significantly increased the risk of opportunistic disease or death from any cause, as compared with continuous antiretroviral therapy, largely as a consequence of lowering the CD4+ cell count and increasing the viral load. Episodic antiretroviral therapy does not reduce the risk of adverse events that have been associated with antiretroviral therapy. ( number, NCT00027352.)

1,999 citations

Journal ArticleDOI
TL;DR: These recommendations address the best approaches for antibiotic stewardship programs to influence the optimal use of antibiotics.
Abstract: Evidence-based guidelines for implementation and measurement of antibiotic stewardship interventions in inpatient populations including long-term care were prepared by a multidisciplinary expert panel of the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. The panel included clinicians and investigators representing internal medicine, emergency medicine, microbiology, critical care, surgery, epidemiology, pharmacy, and adult and pediatric infectious diseases specialties. These recommendations address the best approaches for antibiotic stewardship programs to influence the optimal use of antibiotics.

1,969 citations

Journal ArticleDOI
TL;DR: Daptomycin (6 mg per kilogram daily) is not inferior to standard therapy for S. aureus bacteremia and right-sided endocarditis and met prespecified criteria for the noninferiority of daptomecin.
Abstract: Background Alternative therapies for Staphylococcus aureus bacteremia and endocarditis are needed. Methods We randomly assigned 124 patients with S. aureus bacteremia with or without endocarditis to receive 6 mg of daptomycin intravenously per kilogram of body weight daily and 122 to receive initial low-dose gentamicin plus either an antistaphylococcal penicillin or vancomycin. The primary efficacy end point was treatment success 42 days after the end of therapy. Results Forty-two days after the end of therapy in the modified intention-to-treat analysis, a successful outcome was documented for 53 of 120 patients who received daptomycin as compared with 48 of 115 patients who received standard therapy (44.2 percent vs. 41.7 percent; absolute difference, 2.4 percent; 95 percent confidence interval, −10.2 to 15.1 percent). Our results met prespecified criteria for the noninferiority of daptomycin. The success rates were similar in subgroups of patients with complicated bacteremia, right-sided endocarditis, a...

1,318 citations

Journal ArticleDOI
TL;DR: Baricitinib plus remdesivir was superior to remdes Vivir alone in reducing recovery time and accelerating improvement in clinical status among patients with Covid-19, notably among those receiving high-flow oxygen or noninvasive ventilation.
Abstract: Background Severe coronavirus disease 2019 (Covid-19) is associated with dysregulated inflammation. The effects of combination treatment with baricitinib, a Janus kinase inhibitor, plus remdesivir are not known. Methods We conducted a double-blind, randomized, placebo-controlled trial evaluating baricitinib plus remdesivir in hospitalized adults with Covid-19. All the patients received remdesivir (≤10 days) and either baricitinib (≤14 days) or placebo (control). The primary outcome was the time to recovery. The key secondary outcome was clinical status at day 15. Results A total of 1033 patients underwent randomization (with 515 assigned to combination treatment and 518 to control). Patients receiving baricitinib had a median time to recovery of 7 days (95% confidence interval [CI], 6 to 8), as compared with 8 days (95% CI, 7 to 9) with control (rate ratio for recovery, 1.16; 95% CI, 1.01 to 1.32; P = 0.03), and a 30% higher odds of improvement in clinical status at day 15 (odds ratio, 1.3; 95% CI, 1.0 to 1.6). Patients receiving high-flow oxygen or noninvasive ventilation at enrollment had a time to recovery of 10 days with combination treatment and 18 days with control (rate ratio for recovery, 1.51; 95% CI, 1.10 to 2.08). The 28-day mortality was 5.1% in the combination group and 7.8% in the control group (hazard ratio for death, 0.65; 95% CI, 0.39 to 1.09). Serious adverse events were less frequent in the combination group than in the control group (16.0% vs. 21.0%; difference, -5.0 percentage points; 95% CI, -9.8 to -0.3; P = 0.03), as were new infections (5.9% vs. 11.2%; difference, -5.3 percentage points; 95% CI, -8.7 to -1.9; P = 0.003). Conclusions Baricitinib plus remdesivir was superior to remdesivir alone in reducing recovery time and accelerating improvement in clinical status among patients with Covid-19, notably among those receiving high-flow oxygen or noninvasive ventilation. The combination was associated with fewer serious adverse events. (Funded by the National Institute of Allergy and Infectious Diseases; number, NCT04401579.).

1,301 citations


Showing all 1450 results

Ernest E. Moore132124773396
E. Wesley Ely10250443799
Frederick A. Masoudi9650551607
John S. Rumsfeld9538042618
Gregory J. Jurkovich9433830412
Matthew T. Roe9256630093
Walter L. Biffl8327619536
Kenji Inaba7979724806
Amy P. Abernethy7658625420
Sheryl Zimmerman7442918417
Tom P. Aufderheide7430722906
Mark E. Anderson7225217510
Mark A. Lovell7125020251
Arnaud Perrier7129623156
Marvin I. Schwarz6921916431
Network Information
Related Institutions (5)
Hennepin County Medical Center
4.3K papers, 206.6K citations

86% related

Carolinas Medical Center
4.7K papers, 181.8K citations

83% related

UCLA Medical Center
10.1K papers, 391.1K citations

81% related

Mount Sinai St. Luke's and Mount Sinai Roosevelt
10.9K papers, 448.5K citations

80% related

University of Virginia Health System
7.9K papers, 308.2K citations

79% related

No. of papers from the Institution in previous years