scispace - formally typeset
Search or ask a question
Institution

Department of Biotechnology

GovernmentNew Delhi, India
About: Department of Biotechnology is a government organization based out in New Delhi, India. It is known for research contribution in the topics: Population & Silver nanoparticle. The organization has 4800 authors who have published 5033 publications receiving 82022 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: MTHFR C677T may be used as a prognostic marker to stratify subpopulation of pregnancy cases predisposed to PTD; thereby controlling the risks associated with PTD.

37 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review ultrasound-sensitive detection of pollutants by nanobiosensors, including heavy metals, pesticides, endocrine disruptors, dioxin, biological oxygen demand and microbial pathogens.
Abstract: The growing pollution by hazardous agents is a major concern due to pollutant transfer to water, air, soil and food. Since actual analytical methods are limited, there is a need for detectors that are more sensitive, more selective, faster and cheaper. For instance, advanced portable biosensors have better sensitivity compared to classical diagnostic devices. Here, we review ultrasensitive detection of pollutants by biosensors. In particular, nanobiosensors display remarkable nanomolar to picomolar detection of various pollutants including heavy metals, pesticides, endocrine disruptors, dioxin, biological oxygen demand and microbial pathogens.

37 citations

Journal ArticleDOI
TL;DR: This study seems to provide some novel antimicrobial leads with strong antioxidant potential and the associated ability of antimutagenicity, as four compounds evaluated for their antimUTagenic activity against the directly acting mutagens, methyl methanesulfonate and sodium azide, in Salmonella typhimurium strains showed no sign of mutagenicity.
Abstract: Multidrug resistance (MDR) in microorganisms is a cause of major concern for clinicians and pharmaceutical industries. Continuous development of new antimicrobial drugs with multiple targets and potentials is expected to efficiently combat MDR in these microorganisms. In a continued exploration of new antimicrobial drug leads, 11 marine natural products, semisynthetic, or related synthetic analogs (1-11) and two tobacco cembranoids (12 and 13) were screened for their antimicrobial, antioxidant, and antimutagenic activities. Eight compounds showed varying levels of both antibacterial and antifungal activities. Compounds such as 17-O-methyllatrunculin-A, verongiaquinol, (1S,2E,4R,6R,7E,11E)-2,7,11-cembratriene-4,6-diol), and manzamine-A showed a broad spectrum of activity, inhibiting six of seven tested bacteria with zone of inhibition diameter from 9 to 30 mm. Four of these active compounds also showed antifungal activity. The findings of the in vitro time-kill assay of the most active compound, verongiaquinol, against Staphylococcus aureus indicated its subinhibitory effect at the level lower than the minimal inhibitory concentration (MIC) values (i.e., 2 and 4 µg/mL). At the MIC (8 µg/mL), bacterial cells were completely killed within 18 hours of incubation. DPPH free radical scavenging activity was demonstrated by five compounds in the range of 89.65-36.19% decolorization. Further, four compounds evaluated for their antimutagenic activity against the directly acting mutagens, methyl methanesulfonate and sodium azide, in Salmonella typhimurium strains, interestingly, showed no sign of mutagenicity. Verongiaquinol and manzamine A, in fact, reduced the mutagenicity by 50-75% at a dose of 5 µg/plate in different test strains. Our study seems to provide some novel antimicrobial leads with strong antioxidant potential and the associated ability of antimutagenicity.

37 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive analysis of the use of heterogeneous catalyst, importance and challenges associated in biodiesel production is presented, where Nanocatalysts are the effective heterogeneous catalysts.
Abstract: In recent times, demand for energy has significantly increased due to the depletion of fossil fuels and the fast-industrial revolution. This has created a wide space for the development of sustainable and renewable energy sources. Biodiesel has attained exceptional contemplation among other biofuels due to the use of renewable and low-cost resources. Selection of suitable catalyst plays a vital role in biodiesel production by a catalytic transesterification reaction. Compared to homogeneous catalysts, heterogeneous catalysts are most preferred as they have high selectivity and stability with increased biodiesel yield. Heterogeneous catalyst has made incredible development in biodiesel production under mild operating conditions and has less impact on the environment. Nanocatalysts are the effective heterogeneous catalyst, which has brought a tremendous revolution in biodiesel production in recent years. Thus, present review provides a comprehensive analysis of the use of heterogeneous catalyst, importance and challenges associated in biodiesel production.

37 citations

Journal ArticleDOI
TL;DR: The significant inhibition of inflammatory mediators and cytokines by fractions from C. vulgaris suggests that this microalga would be a potential source of developing anti-inflammatory agents and a good alternate for conventional steroidal and nonsteroidal anti- inflammatory drugs.
Abstract: Objective: The aim of this study was to determine the in vitro anti-inflammatory activities of solvent fractions from Chlorella vulgaris by inhibiting the production of pro-inflammatory mediators and cytokines. Methods: Methanolic extracts (80%) of C. vulgaris were prepared and partitioned with solvents of increasing polarity viz., n-hexane, chloroform, ethanol, and water. Various concentrations of the fractions were tested for cytotoxicity in RAW 264.7 cells using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, and the concentrations inducing cell growth inhibition by about 50% (IC50) were chosen for further studies. Lipopolysaccharide (LPS) stimulated RAW 264.7 cells were treated with varying concentrations of C. vulgaris fractions and examined for its effects on nitric oxide (NO) production by Griess assay. The release of prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and interleukin 6 (IL-6) were quantified using enzyme-linked immunosorbent assay using Celecoxib and polymyxin B as positive controls. Results: MTT assay revealed all the solvent fractions that inhibited cell growth in a dose-dependent manner. Of all the extracts, 80% methanolic extract exhibited the strongest anti-inflammatory activity by inhibiting NO production (P < 0.01), PGE2 (P < 0.05), TNF-α, and IL-6 (P < 0.001) release in LPS induced RAW 264.7 cells. Both hexane and chloroform fractions recorded a significant (P < 0.05) and dose-dependent inhibition of LPS induced inflammatory mediators and cytokines in vitro. The anti-inflammatory effect of ethanol and aqueous extracts was not significant in the study. Conclusion: The significant inhibition of inflammatory mediators and cytokines by fractions from C. vulgaris suggests that this microalga would be a potential source of developing anti-inflammatory agents and a good alternate for conventional steroidal and nonsteroidal anti-inflammatory drugs.

37 citations


Authors

Showing all 4812 results

NameH-indexPapersCitations
Ashok Pandey9679643038
Klaus Becker7932027494
Bansi D. Malhotra7537519419
Ashwani Kumar6670318099
Sanjay K. Banerjee6279830044
M. Michael Gromiha5635210617
Swaran J.S. Flora5526711434
Mallappa Kumara Swamy5486414508
Pulok K. Mukherjee5429610873
Mukesh Doble513649826
Jaya Narayan Sahu491579569
Pradeep Das4942610118
Jon R. Lorsch481177661
Rakesh Tuli471657497
Amit K. Goyal471575749
Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
202261
2021948
2020648
2019572
2018427