scispace - formally typeset
Search or ask a question
Institution

Department of Biotechnology

GovernmentNew Delhi, India
About: Department of Biotechnology is a government organization based out in New Delhi, India. It is known for research contribution in the topics: Population & Silver nanoparticle. The organization has 4800 authors who have published 5033 publications receiving 82022 citations.


Papers
More filters
Journal ArticleDOI
01 Apr 2017-Ionics
TL;DR: In this paper, the NiS/AB composites have been electrochemically deposited on a fluorine-doped tin oxide (FTO) glass substrate and the structure, surface morphology, and elemental composition of the electrodeposited NiS composite materials were characterized by XRD, HR-SEM, and EDS.
Abstract: The various carbon-based materials incorporated nickel sulfide (NiS) composites have been electrochemically deposited on fluorine-doped tin oxide (FTO) glass substrate. The structure, surface morphology, and elemental composition of the electrodeposited NiS composite materials were characterized by XRD, HR-SEM, and EDS. The electrochemically deposited various NiS composites such as NiS/AB (acetylene black), NiS/VC (Vulcan carbon), and NiS/MWCNT (multi walled carbon nanotubes) have been served as an efficient, low-cost counter electrode (CE) materials for dye-sensitized solar cells (DSSCs). Electrochemical impedance spectroscopy and cyclic voltammetry of NiS/AB CE composite materials exhibits a good conductivity and superior electrocatalytic performance over other various carbon incorporated materials. The positive synergistic effects, which increase the active catalytic sites and improved interfacial charge transfer, may be accountable for the superior electrocatalytic performance of NiS/AB composite materials The fabricated DSSC with NiS/AB CE reached a power conversion efficiency of 6.75%, which is equivalent with platinum electrode (7.20%). These results validate that the electrochemically deposited NiS/AB composite film is an auspicious alternative for low-cost and high efficient DSSCs.

32 citations

Book ChapterDOI
01 Jan 2019
TL;DR: The application of microorganisms (bacteria, fungi and algae) and plants for the removal of azo dyes from textile wastewater is an attractive option over the physico-chemical methods as mentioned in this paper.
Abstract: Textile industries are one of the largest generator of wastewater as large amount of water is used in coloring and finishing processes. The effluents released from textile industries contain biodegradable and non-biodegradable chemicals such as dyes, dispersants, leveling agents etc. These effluents are released into water bodies which can modify the physical, chemical and biological nature of the receiving water bodies. Azo dyes are largely utilized in textile industry as coloring agent. During the processing of textile, a lot of dyestuff specifically lost to the wastewater due to inefficiency in dyeing processes which may causes serious health and environmental problems. Therefore, removal of dyes from textile wastewater is necessary prior to their disposal. Several physico-chemical techniques have been utilized for the treatment of wastewater containing dyes, but execution of these strategies have the distinctive limitations of being expensive, unable to the complete removal of dyes from wastewater, and producing noteworthy amounts of sludge that may cause auxiliary pollution issues. The application of microorganisms (bacteria, fungi and algae) and plants for the removal of azo dyes from textile wastewater is an attractive option over the physico-chemical methods. Biological methods are environment friendly, produce less sludge, and inexpensive. Water recycling is the reuse of treated wastewater for valuable purposes such as agricultural irrigation and industrial processes etc. Recycling of textile wastewater is important for restricting the amount of wastewater and expenses of production, and recommended for the protection of environment.

32 citations

Journal ArticleDOI
TL;DR: The data in this report clearly establish the presence of phenotypically distinct XDR strains in India by molecular profiling and further identify specific mutational hot spots within key genes of XDR-TB strains.
Abstract: We screened 194 Mycobacterium tuberculosis strains isolated from tuberculosis (TB) patients in Delhi and neighboring regions in India to identify the prevalence of extensive drug resistance (XDR) in clinical isolates. Among these, 104 isolates were found to be multidrug resistant (MDR), and 6 were identified as XDR isolates, which was later confirmed by antimicrobial susceptibility testing against the respective drug screening panel. Genotyping was carried out by amplifying and sequencing the following genes: rpoB (rifampin), katG (isoniazid), gyrA (fluoroquinolones), and rrs (amikacin, kanamycin, and capreomycin). Our analyses indicated that mutations at the hot spots of these genes were positively correlated with drug resistance in clinical isolates. The key mutation observed for rpoB was in the codon for amino acid position 531 (S531L), and other mutations were seen in the hot spot, including those encoding Q510P, L511H, D516V, and H526Y mutations. We identified S315T and R463L substitutions encoded in the katG locus. An S95T substitution encoded in the gyrA locus was the most common mutation observed in fluoroquinolone-resistant isolates. In addition, we saw D94G and D94N mutations encoded in the QRDR region. The 16S rRNA (rrs) gene encoded mainly the A1401G mutation and an additional mutation, G1484T, resulting in ribosomal modifications. Taken together, the data in this report clearly establish the presence of phenotypically distinct XDR strains in India by molecular profiling and further identify specific mutational hot spots within key genes of XDR-TB strains.

32 citations

Journal ArticleDOI
TL;DR: Out of the initial 22 pneumococcal proteins selected for screening, pavB and pullulanase were the most promising candidate proteins and became potential vaccine candidates in the future.
Abstract: In the past few decades, genome-based approaches have contributed significantly to vaccine development. Our aim was to identify the most conserved and immunogenic antigens of Streptococcus pneumoniae, which can be potential vaccine candidates in the future. BLASTn was done to identify the most conserved antigens. PSORTb 3.0.2 was run to predict the subcellular localization of the proteins. B cell epitope prediction was done for the immunogenicity testing. Finally, BLASTp was done for verifying the extent of similarity to human proteome to exclude the possibility of autoimmunity. Proteins failing to comply with the set parameters were filtered at each step. Based on the above criteria, out of the initial 22 pneumococcal proteins selected for screening, pavB and pullulanase were the most promising candidate proteins.

32 citations

Journal Article
TL;DR: In vitro clonal multiplication of apple rootstock MM 111 using axillary buds and shoot apices and subcultured on MS medium supplemented with different combinations and concentrations of growth regulators showed less phenol exudation and less contamination.
Abstract: In vitro clonal multiplication of apple rootstock MM 111 using axillary buds and shoot apices were carried out. Vegetative axillary buds of the size of 0.2-2.0 cm and shoot apices measuring 4 mm in length were initiated to shoot proliferation on MS medium supplemented with BA (0.5 - 1.0 mgl(-1)), GA3(0.5 mgl(-1)), with or without IBA(0.05 - 0.1 mgl(-1)). Small size explants showed less phenol exudation and less contamination. Following establishment phase, the small shoots emerged from explants were subcultured on MS medium supplemented with different combinations and concentrations of growth regulators. BA (1.0 mgl(-1)) and GA3 (0.5 mgl(-1)) combination showed highest multiplication rate (1:5), andcl also produced longer shoots. Two step rooting was done by transferring microcuttings to auxin free solid medium after root initiation in dark on 1/2 strength MS liquid medium containing IBA (0.5 mgl(-1) ). Rooted plantlets were transferred to peat containing paper cups and resulting plants of MM 111 acclimated successfully for transfer to field.

32 citations


Authors

Showing all 4812 results

NameH-indexPapersCitations
Ashok Pandey9679643038
Klaus Becker7932027494
Bansi D. Malhotra7537519419
Ashwani Kumar6670318099
Sanjay K. Banerjee6279830044
M. Michael Gromiha5635210617
Swaran J.S. Flora5526711434
Mallappa Kumara Swamy5486414508
Pulok K. Mukherjee5429610873
Mukesh Doble513649826
Jaya Narayan Sahu491579569
Pradeep Das4942610118
Jon R. Lorsch481177661
Rakesh Tuli471657497
Amit K. Goyal471575749
Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
202261
2021948
2020648
2019572
2018427