scispace - formally typeset
Search or ask a question
Institution

Department of Biotechnology

GovernmentNew Delhi, India
About: Department of Biotechnology is a government organization based out in New Delhi, India. It is known for research contribution in the topics: Population & Silver nanoparticle. The organization has 4800 authors who have published 5033 publications receiving 82022 citations.


Papers
More filters
Journal Article
TL;DR: Exposure to sodium arsenite and mercuric chloride lead to more pronounced oxidative stress and hepatotoxicity while lead acetate caused significant alterations in haem synthesis pathway compared to two other thiol binding metal/metalloid.
Abstract: Globally, arsenic, mercury and lead constitutes as the three most hazardous environmental toxicants perturbing imbalance in pro—oxidant and antioxidant homeostasis. Individual toxicity of these environmental toxicants is well known but there is lack of comparative data on variables indicative of oxidative stress. We thus investigated the effects of chronic exposure to sodium arsenite, mercuric chloride and lead acetate on blood and tissue oxidative stress, metal concentration and metallothionein (MT) contents. Male rats were exposed to sodium arsenite, mercuric chloride and lead acetate (0.05 mg/kg each, orally, once daily) for 6 months. Arsenic, mercury and lead exposure led to a significant inhibition of blood δ—aminolevulinic acid dehydratase (ALAD) activity and glutathione level supported by increased thiobarbituric acid reactive substance (TBARS). The level of inhibition was more pronounced in case of lead followed by mercury and arsenic. These metals/ metalloid significantly increased reactive oxygen species (ROS), thiobarbituric acid reactive substances (TBARS) and glutathione peroxidase (GPx) activity accompanied by a decreased superoxide dismutase (SOD), catalase and reduced and oxidized glutathione (GSH and GSSG) levels in blood and tissues. Mercury alone produced a significant induction of hepatic and renal MT concentrations. Serum transaminases, lactate dehydrogenase and alkaline phosphatase activities increased significantly on exposure to arsenic and mercury exposure suggesting liver injury which was less pronounced in case of lead exposure. These biochemical alterations were supported by increased arsenic, mercury and lead concentrations in blood and soft tissues. The present study suggests that exposure to sodium arsenite and mercuric chloride lead to more pronounced oxidative stress and hepatotoxicity while lead acetate caused significant alterations in haem synthesis pathway compared to two other thiol binding metal/metalloid.

54 citations

Journal ArticleDOI
TL;DR: It was found that a long selection period with the low hygromycin concentration yielded stable transformants, which was further confirmed by PCR analysis and Southern hybridization of transformants.

54 citations

Journal ArticleDOI
TL;DR: The possibility that non-conventional antimicrobial therapeutics and targets could expose the ‘chink in the armor’ of chronic wound biofilms, thereby providing much-needed alternative or adjunct strategies for wound infection management is discussed.
Abstract: Chronic wounds are a major healthcare burden, with huge public health and economic impact. Microbial infections are the single most important cause of chronic, non-healing wounds. Chronic wound infections typically form biofilms, which are notoriously recalcitrant to conventional antibiotics. This prompts the need for alternative or adjunct ‘anti-biofilm’ approaches, notably those that account for the unique chronic wound biofilm microenvironment. In this review, we discuss the recent advances in non-conventional antimicrobial approaches for chronic wound biofilms, looking beyond standard antibiotic therapies. These non-conventional strategies are discussed under three groups. The first group focuses on treatment approaches that directly kill or inhibit microbes in chronic wound biofilms, using mechanisms or delivery strategies distinct from antibiotics. The second group discusses antimicrobial approaches that modify the biological, chemical or biophysical parameters in the chronic wound microenvironment, which in turn enables the disruption and removal of biofilms. Finally, therapeutic approaches that affect both, biofilm bacteria and microenvironment factors, are discussed. Understanding the advantages and limitations of these recent approaches, their stage of development and role in biofilm management, could lead to new treatment paradigms for chronic wound infections. Towards this end, we discuss the possibility that non-conventional antimicrobial therapeutics and targets could expose the ‘chink in the armor’ of chronic wound biofilms, thereby providing much-needed alternative or adjunct strategies for wound infection management.

54 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of medical stone (MS) on the dissolved organic matter (DOM) extracted from composted pig manure (PM) was evaluated and the results showed that the addition of MS improved the biodegradation of protein-like materials, ether, alcohols, and polysaccharides.

54 citations

Journal ArticleDOI
01 Apr 2020
TL;DR: In this paper, the authors used cauliflower (Brassica oleracea var. botrytis) waste extract to further test their potential applications in photocatalytic degradation of methylene blue dye and Hg2+ biosensing.
Abstract: Green synthesis of silver nanoparticles (AgNPs) using plant extracts has emerged as a viable environment-friendly method. The aim of the study was to biosynthesize AgNPs using cauliflower (Brassica oleracea var. botrytis) waste extract and further test their potential applications in photocatalytic degradation of methylene blue (MB) dye and Hg2+ biosensing. Optimum extract concentration, AgNO3 concentration, pH and temperature required for biosynthesis of stable AgNPs were determined by UV–visible spectroscopy. FT-IR, XRD, SEM, TEM, SAED, XPS and BET analysis were performed for characterizing AgNPs. MB dye degradation using AgNPs was determined by analyzing the intensity of dye absorption maxima at 664 nm. Specificity and sensitivity of biosynthesized AgNPs for Hg2+ ions were studied for assessing their biosensing abilities. Optimum conditions needed for biosynthesis of stable AgNPs were observed to be 3 ml extract, 0.5 mM AgNO3, pH 8.5 and microwave-assisted heating at 600 W for 5 min. FT-IR analysis showed that the extract contained necessary functional groups that facilitated biosynthesis of AgNPs. XRD, SEM, TEM, SAED, XPS results confirmed the formation of AgNPs. BET analysis showed that AgNPs had an average size of 35.08 nm and surface area of 19.22 m2/g. Maximum MB dye degradation percentage of 97.57% was obtained at 150 min without any significant silver leaching thereby, signifying notable photocatalytic property of AgNPs. Biosensing studies showed that AgNPs were specifically able to detect up to 0.1 mg/l Hg2+ ions. In summary, cauliflower waste served as a useful source of reducing agents for biosynthesizing AgNPs with promising environmental applications.

54 citations


Authors

Showing all 4812 results

NameH-indexPapersCitations
Ashok Pandey9679643038
Klaus Becker7932027494
Bansi D. Malhotra7537519419
Ashwani Kumar6670318099
Sanjay K. Banerjee6279830044
M. Michael Gromiha5635210617
Swaran J.S. Flora5526711434
Mallappa Kumara Swamy5486414508
Pulok K. Mukherjee5429610873
Mukesh Doble513649826
Jaya Narayan Sahu491579569
Pradeep Das4942610118
Jon R. Lorsch481177661
Rakesh Tuli471657497
Amit K. Goyal471575749
Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
202261
2021948
2020648
2019572
2018427