Institution
Donghua University
Education•Shanghai, China•
About: Donghua University is a(n) education organization based out in Shanghai, China. It is known for research contribution in the topic(s): Fiber & Nanofiber. The organization has 21155 authors who have published 21841 publication(s) receiving 393091 citation(s). The organization is also known as: Dōnghuá Dàxué & China Textile University.
Topics: Fiber, Nanofiber, Electrospinning, Membrane, Graphene
Papers published on a yearly basis
Papers
More filters
[...]
TL;DR: This review attempts to summarize the recent progress in the rational design and fabrication ofheterojunction photocatalysts, such as the semiconductor-semiconductor heterojunction, the semiconductors-metal heterojunctions, the silicon-carbon heteroj junction and the multicomponent heteroj conjunction.
Abstract: Semiconductor-mediated photocatalysis has received tremendous attention as it holds great promise to address the worldwide energy and environmental issues. To overcome the serious drawbacks of fast charge recombination and the limited visible-light absorption of semiconductor photocatalysts, many strategies have been developed in the past few decades and the most widely used one is to develop photocatalytic heterojunctions. This review attempts to summarize the recent progress in the rational design and fabrication of heterojunction photocatalysts, such as the semiconductor–semiconductor heterojunction, the semiconductor–metal heterojunction, the semiconductor–carbon heterojunction and the multicomponent heterojunction. The photocatalytic properties of the four junction systems are also discussed in relation to the environmental and energy applications, such as degradation of pollutants, hydrogen generation and photocatalytic disinfection. This tutorial review ends with a summary and some perspectives on the challenges and new directions in this exciting and still emerging area of research.
2,334 citations
[...]
TL;DR: In this paper, a survey of recent developments in asymptotic techniques, which are valid not only for weakly nonlinear equations, but also for strongly ones, is presented.
Abstract: This paper features a survey of some recent developments in asymptotic techniques, which are valid not only for weakly nonlinear equations, but also for strongly ones. Further, the obtained approximate analytical solutions are valid for the whole solution domain. The limitations of traditional perturbation methods are illustrated, various modied perturbation techniques are proposed, and some mathematical tools such as variational theory, homotopy technology, and iteration technique are introduced to overcome the shortcomings. In this paper the following categories of asymptotic methods are emphasized: (1) variational approaches, (2) parameter-expanding methods, (3) parameterized perturbation method, (4) homotopy perturbation method (5) iteration perturbation method, and ancient Chinese methods. The emphasis of this article is put mainly on the developments in this eld in China so the references, therefore, are not exhaustive.
2,030 citations
[...]
TL;DR: The principles and methods of designing and optimizing electrolytes for ES performance and application are highlighted through a comprehensive analysis of the literature, and challenges in producing high-performing electrolytes are analyzed.
Abstract: Electrolytes have been identified as some of the most influential components in the performance of electrochemical supercapacitors (ESs), which include: electrical double-layer capacitors, pseudocapacitors and hybrid supercapacitors. This paper reviews recent progress in the research and development of ES electrolytes. The electrolytes are classified into several categories, including: aqueous, organic, ionic liquids, solid-state or quasi-solid-state, as well as redox-active electrolytes. Effects of electrolyte properties on ES performance are discussed in detail. The principles and methods of designing and optimizing electrolytes for ES performance and application are highlighted through a comprehensive analysis of the literature. Interaction among the electrolytes, electro-active materials and inactive components (current collectors, binders, and separators) is discussed. The challenges in producing high-performing electrolytes are analyzed. Several possible research directions to overcome these challenges are proposed for future efforts, with the main aim of improving ESs' energy density without sacrificing existing advantages (e.g., a high power density and a long cycle-life) (507 references).
1,803 citations
[...]
TL;DR: The challenges in achieving highly active and stable CO2 reduction electrocatalysts are analyzed, and several research directions for practical applications are proposed, with the aim of mitigating performance degradation, overcoming additional challenges, and facilitating research and development in this area.
Abstract: This paper reviews recent progress made in identifying electrocatalysts for carbon dioxide (CO2) reduction to produce low-carbon fuels, including CO, HCOOH/HCOO−, CH2O, CH4, H2C2O4/HC2O4−, C2H4, CH3OH, CH3CH2OH and others. The electrocatalysts are classified into several categories, including metals, metal alloys, metal oxides, metal complexes, polymers/clusters, enzymes and organic molecules. The catalyts' activity, product selectivity, Faradaic efficiency, catalytic stability and reduction mechanisms during CO2 electroreduction have received detailed treatment. In particular, we review the effects of electrode potential, solution–electrolyte type and composition, temperature, pressure, and other conditions on these catalyst properties. The challenges in achieving highly active and stable CO2 reduction electrocatalysts are analyzed, and several research directions for practical applications are proposed, with the aim of mitigating performance degradation, overcoming additional challenges, and facilitating research and development in this area.
1,734 citations
[...]
TL;DR: In this article, a new method, called Exp-function method, is proposed to seek solitary solutions, periodic solutions and compacton-like solutions of nonlinear differential equations, and the modified KdV equation and Dodd-Bullough-Mikhailov equation are chosen to illustrate the effectiveness and convenience of the suggested method.
Abstract: In this paper, a new method, called Exp-function method, is proposed to seek solitary solutions, periodic solutions and compacton-like solutions of nonlinear differential equations. The modified KdV equation and Dodd–Bullough–Mikhailov equation are chosen to illustrate the effectiveness and convenience of the suggested method.
1,545 citations
Authors
Showing all 21155 results
Name | H-index | Papers | Citations |
---|---|---|---|
Dongyuan Zhao | 160 | 872 | 106451 |
Xiang Zhang | 154 | 1733 | 117576 |
Seeram Ramakrishna | 147 | 1552 | 99284 |
Kuo-Chen Chou | 143 | 487 | 57711 |
Shuai Liu | 129 | 1095 | 80823 |
Chao Zhang | 127 | 3119 | 84711 |
Tao Zhang | 123 | 2772 | 83866 |
Zidong Wang | 122 | 914 | 50717 |
Xinchen Wang | 120 | 349 | 65072 |
Zhenyu Zhang | 118 | 1167 | 64887 |
Benjamin S. Hsiao | 108 | 602 | 41071 |
Qian Wang | 108 | 2148 | 65557 |
Jian Zhang | 107 | 3064 | 69715 |
Yan Zhang | 107 | 2410 | 57758 |
Richard B. Kaner | 106 | 557 | 66862 |