scispace - formally typeset
Search or ask a question

Showing papers by "Donghua University published in 2014"


Journal ArticleDOI
TL;DR: This review attempts to summarize the recent progress in the rational design and fabrication ofheterojunction photocatalysts, such as the semiconductor-semiconductor heterojunction, the semiconductors-metal heterojunctions, the silicon-carbon heteroj junction and the multicomponent heteroj conjunction.
Abstract: Semiconductor-mediated photocatalysis has received tremendous attention as it holds great promise to address the worldwide energy and environmental issues. To overcome the serious drawbacks of fast charge recombination and the limited visible-light absorption of semiconductor photocatalysts, many strategies have been developed in the past few decades and the most widely used one is to develop photocatalytic heterojunctions. This review attempts to summarize the recent progress in the rational design and fabrication of heterojunction photocatalysts, such as the semiconductor–semiconductor heterojunction, the semiconductor–metal heterojunction, the semiconductor–carbon heterojunction and the multicomponent heterojunction. The photocatalytic properties of the four junction systems are also discussed in relation to the environmental and energy applications, such as degradation of pollutants, hydrogen generation and photocatalytic disinfection. This tutorial review ends with a summary and some perspectives on the challenges and new directions in this exciting and still emerging area of research.

3,013 citations


Journal ArticleDOI
TL;DR: The challenges in achieving highly active and stable CO2 reduction electrocatalysts are analyzed, and several research directions for practical applications are proposed, with the aim of mitigating performance degradation, overcoming additional challenges, and facilitating research and development in this area.
Abstract: This paper reviews recent progress made in identifying electrocatalysts for carbon dioxide (CO2) reduction to produce low-carbon fuels, including CO, HCOOH/HCOO−, CH2O, CH4, H2C2O4/HC2O4−, C2H4, CH3OH, CH3CH2OH and others. The electrocatalysts are classified into several categories, including metals, metal alloys, metal oxides, metal complexes, polymers/clusters, enzymes and organic molecules. The catalyts' activity, product selectivity, Faradaic efficiency, catalytic stability and reduction mechanisms during CO2 electroreduction have received detailed treatment. In particular, we review the effects of electrode potential, solution–electrolyte type and composition, temperature, pressure, and other conditions on these catalyst properties. The challenges in achieving highly active and stable CO2 reduction electrocatalysts are analyzed, and several research directions for practical applications are proposed, with the aim of mitigating performance degradation, overcoming additional challenges, and facilitating research and development in this area.

2,205 citations


Book ChapterDOI
01 Jan 2014
TL;DR: In this paper, a brief analysis of nanofibers used for advanced energy and environmental applications in the past decade indicates that their impact has been realized well and is encouraging, and will continually represent a key technology to ensure sustainable energy and preserve our environment for the future.
Abstract: Energy and environment will head the list of top global issues facing society for the next 50 years. Nanotechnology is responding to these challenges by designing and fabricating functional nanofibers optimized for energy and environmental applications. The route toward these nano-objects is based primarily on electrospinning: a highly versatile method that allows the fabrication of continuous fibers with diameters down to a few nanometers. The mechanism responsible for the fiber formation mainly includes the Taylor Cone theory and flight-instability theory, which can be predicted theoretically and controlled experimentally. Moreover, the electrospinning has been applied to natural polymers, synthetic polymers, ceramics, and carbon. Fibers with complex architectures, such as ribbon fiber, porous fiber, core-shell fiber, or hollow fiber, can be produced by special electrospinning methods. It is also possible to produce nanofibrous membranes with designed aggregate structure including alignment, patterning, and two-dimensional nanonets. Finally, the brief analysis of nanofibers used for advanced energy and environmental applications in the past decade indicates that their impact has been realized well and is encouraging, and will continually represent a key technology to ensure sustainable energy and preserve our environment for the future.

1,044 citations


Journal ArticleDOI
Yang Si1, Jianyong Yu1, Xiaomin Tang1, Jianlong Ge1, Bin Ding1 
TL;DR: This work reports a novel strategy to create fibrous, isotropically bonded elastic reconstructed (FIBER) NFAs with a hierarchical cellular structure and superelasticity by combining electrospun nanofibres and the fibrous freeze-shaping technique.
Abstract: Three-dimensional nanofibrous aerogels (NFAs) that are both highly compressible and resilient would have broad technological implications for areas ranging from electrical devices and bioengineering to damping materials; however, creating such NFAs has proven extremely challenging. Here we report a novel strategy to create fibrous, isotropically bonded elastic reconstructed (FIBER) NFAs with a hierarchical cellular structure and superelasticity by combining electrospun nanofibres and the fibrous freeze-shaping technique. Our approach causes the intrinsically lamellar deposited electrospun nanofibres to assemble into elastic bulk aerogels with tunable densities and desirable shapes on a large scale. The resulting FIBER NFAs exhibit densities of >0.12 mg cm(-3), rapid recovery from deformation, efficient energy absorption and multifunctionality in terms of the combination of thermal insulation, sound absorption, emulsion separation and elasticity-responsive electric conduction. The successful synthesis of such fascinating materials may provide new insights into the design and development of multifunctional NFAs for various applications.

817 citations


Journal ArticleDOI
TL;DR: These studies explore boronic acids, C-H bonds, and P-H Bonds as novel nucleophiles in transition-metal-mediated or -catalyzed cross-coupling reactions with CF3SiMe3, opening new viewpoints for future trifluoromethylation reactions.
Abstract: ConspectusThe trifluoromethyl group is widely prevalent in many pharmaceuticals and agrochemicals because its incorporation into drug candidates could enhance chemical and metabolic stability, improve lipophilicity and bioavailability, and increase the protein bind affinity. Consequently, extensive attention has been devoted toward the development of efficient and versatile methods for introducing the CF3 group into various organic molecules. Direct trifluoromethylation reaction has become one of the most efficient and important approaches for constructing carbon–CF3 bonds. Traditionally, the nucleophilic trifluoromethylation reaction involves an electrophile and the CF3 anion, while the electrophilic trifluoromethylation reaction involves a nucleophile and the CF3 cation. In 2010, we proposed the concept of oxidative trifluoromethylation: the reaction of nucleophilic substrates and nucleophilic trifluoromethylation reagents in the presence of oxidants.In this Account, we describe our recent studies of ox...

583 citations


Journal ArticleDOI
TL;DR: In this paper, a comprehensive overview and description of graphene-based nanomaterials explored in recent years for catalyst supports and metal-free catalysts for polymer electrolyte membrane (PEM) fuel cell oxygen reduction reactions (ORR) is presented.
Abstract: A comprehensive overview and description of graphene-based nanomaterials explored in recent years for catalyst supports and metal-free catalysts for polymer electrolyte membrane (PEM) fuel cell oxygen reduction reactions (ORR) is presented. The catalyst material structures/morphologies, material selection, and design for synthesis, catalytic performance, catalytic mechanisms, and theoretical approaches for catalyst down-selection and catalyzed ORR mechanisms are emphasized with respect to the performance of ORR catalysts in terms of both activity and stability. When graphene-based materials, including graphene and doped graphene, are used as the supporting materials for both Pt/Pt alloy catalysts and non-precious metal catalyst, the resulting ORR catalysts can give superior catalyst activity and stability compared to those of conventional carbon-supported catalysts; when they are used as metal-free ORR catalysts, significant catalytic activity and stability are observed. The nitrogen-doped graphene materials even show superior performance compared to supported metal catalysts. Challenges including the lack of material mass production, unoptimized catalyst structure/morphology, insufficient fundamental understanding, and testing tools/protocols for performance optimization and validation are identified, and approaches to address these challenges are suggested.

420 citations


Journal ArticleDOI
Kaibing Xu1, Wenyao Li1, Qian Liu1, Bo Li1, Xijian Liu1, An Lei1, Zhigang Chen1, Rujia Zou1, Junqing Hu1 
TL;DR: In this article, a hierarchical mesoporous NiCo2O4@MnO2 core-shell nanowire arrays on nickel foam via a facile hydrothermal and electrodeposition process for supercapacitor applications were demonstrated.
Abstract: We demonstrate the design and fabrication of hierarchical mesoporous NiCo2O4@MnO2 core–shell nanowire arrays on nickel foam via a facile hydrothermal and electrodeposition process for supercapacitor applications. In order to increase the energy density and voltage window, a high-voltage asymmetric supercapacitor based on hierarchical mesoporous NiCo2O4@MnO2 core–shell nanowire arrays on nickel foam as the positive electrode and activated carbon (AC) as the negative electrode was successfully fabricated. The as-fabricated asymmetric supercapacitor device achieved a specific capacitance of 112 F g−1 at a current density of 1 mA cm−2 with a stable operational voltage of 1.5 V and a maximum energy density of 35 W h kg−1. The present NiCo2O4@MnO2 core–shell nanowire arrays with remarkable electrochemical properties could be considered as potential electrode materials for next generation supercapacitors in high energy density storage systems.

338 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present a state-of-the-art review on the process effect, especially on the effects of photobiochemical process, micro algal species, physicochemical process and hydrodynamic process on the performance of microalgal-CO2 fixation and biomass production.
Abstract: Global warming caused by anthropogenic CO2 emission has been one of the most important issues in the fields of science, environment and even international economics and politics. To control and reduce CO2 emissions, intensive carbon dioxide capture and storage (CCS) technologies have been comprehensively developed for sequestration of CO2 especially from combustion flue gas. Microalgae-based CO2 biological fixation is regarded as a potential way to not only reduce CO2 emission but also achieve energy utilization of microalgal biomass. However, in this approach culture process of microalgae plays an important role as it is directly related to the mechanism of microalgal-CO2 fixation and characteristics of microalgal biomass production. The aim of this work is to present a state-of-the-art review on the process effect, especially on the effects of photobiochemical process, microalgal species, physicochemical process and hydrodynamic process on the performance of microalgal-CO2 fixation and biomass production. Also, the perspectives are proposed in order to provide a positive reference on developing its fundamental research and key technology.

338 citations


Journal ArticleDOI
Weili Hu1, Shiyan Chen1, Yang Jingxuan1, Zhe Li1, Huaping Wang1 
TL;DR: This review gives a summary of construction strategies including biosynthetic modification, chemical modification, and different in situ and ex situ patterns of functionalization for the preparation of advanced BC-based functional nanomaterials.

334 citations


Journal ArticleDOI
TL;DR: Li et al. as mentioned in this paper proposed a method to solve the problem of nano-bionics in textiles and showed that the method can be applied in the field of biomedical engineering.
Abstract: P. Xu, Prof. J. Y. Yu, Prof. F. X. LiCollege of Textiles Donghua University Shanghai , 201620 , P. R. ChinaE-mail: fxlee@dhu.edu.cn P. Xu, T . L. Gu, Z. Y. Cao, Prof. B. Q. Wei, Prof. T.-W. ChouDepartment of Mechanical Engineering University of Delaware Newark , DE 19716 , USAE-mail: chou@udel.edu Dr. J.-H. ByunComposites Research CenterKorean Institute of Materials ScienceChangwon, 641831, South Korea Dr. W. B. Lu, Prof. Q. W. LiSuzhou Institute of Nano-Tech and Nano-BionicsSuzhou, 215123, P. R. China

318 citations


Journal ArticleDOI
Hou Chengyi1, Hongzhi Wang1, Qinghong Zhang1, Yaogang Li1, Meifang Zhu1 
TL;DR: A facile and passive multiply flexible thin-film sensor is demonstrated based on thermoelectric effects in graphene that senses heat and cold, and measures heated/cooled areas; it also discerns human touch from other pressures, locates human touch, and measure pressure levels.
Abstract: A facile and passive multiply flexible thin-film sensor is demonstrated based on thermoelectric effects in graphene. The sensor is highly conductive, free-standing, flexible, and elastic. It senses heat and cold, and measures heated/cooled areas; it also discerns human touch from other pressures, locates human touch, and measures pressure levels. All of these sensing abilities are demonstrated without any internal/external power supply.

Journal ArticleDOI
26 Aug 2014-ACS Nano
TL;DR: This work demonstrates the implementation of a laminated ultrathin CVD graphene film as a stretchable and transparent electrode for supercapacitors and demonstrates excellent frequency capability with small time constants under stretching.
Abstract: Due to their exceptional flexibility and transparency, CVD graphene films have been regarded as an ideal replacement of indium tin oxide for transparent electrodes, especially in applications where electronic devices may be subjected to large tensile strain. However, the search for a desirable combination of stretchability and electrochemical performance of such devices remains a huge challenge. Here, we demonstrate the implementation of a laminated ultrathin CVD graphene film as a stretchable and transparent electrode for supercapacitors. Transferred and buckled on PDMS substrates by a prestraininig-then-buckling strategy, the four-layer graphene film maintained its outstanding quality, as evidenced by Raman spectra. Optical transmittance of up to 72.9% at a wavelength of 550 nm and stretchability of 40% were achieved. As the tensile strain increased up to 40%, the specific capacitance showed no degradation and even increased slightly. Furthermore, the supercapacitor demonstrated excellent frequency capa...

Journal ArticleDOI
TL;DR: A polyethyleneimine (PEI)-mediated approach to synthesizing hyaluronic acid (HA)-targeted magnetic iron oxide nanoparticles (Fe3O4 NPs) for in vivo targeted tumor magnetic resonance (MR) imaging applications was reported in this paper.

Journal ArticleDOI
Bin Shen1
TL;DR: In this paper, the authors depict the structure of sustainable fashion supply chain including eco-material preparation, sustainable manufacturing, green distribution, green retailing, and ethical consumers based on the extant literature.
Abstract: Sustainability is significantly important for fashion business due to consumers’ increasing awareness of environment. When a fashion company aims to promote sustainability, the main linkage is to develop a sustainable supply chain. This paper contributes to current knowledge of sustainable supply chain in the textile and clothing industry. We first depict the structure of sustainable fashion supply chain including eco-material preparation, sustainable manufacturing, green distribution, green retailing, and ethical consumers based on the extant literature. We study the case of the Swedish fast fashion company, HM (2) the HM and (3) the H&M CEO may consider the degrees of human wellbeing and economic wellbeing, instead of environmental wellbeing when launching the online shopping channel in a specific country.

Journal ArticleDOI
TL;DR: These Cu7.2S4 NCs with a mean size of ∼20 nm as a novel photothermal agent have been prepared by a simple thermal decomposition route and exhibit strong near-infrared (NIR) absorption, good photostability and significant photothermal conversion efficiency.
Abstract: Copper sulphides, as a novel kind of photothermal agent for photothermal therapy (PTT) of cancer cells, have attracted increasing attention in recent years due to good photostability, synthetic simplicity, low toxicity and low cost. However, the unsatisfactory photothermal conversion efficiency of copper sulphides limits their bioapplication as PTT agents. Herein, Cu7.2S4 NCs with a mean size of ∼20 nm as a novel photothermal agent have been prepared by a simple thermal decomposition route. Moreover, these NCs exhibit strong near-infrared (NIR) absorption, good photostability and significant photothermal conversion efficiency up to 56.7% due to strong NIR absorption, good dispersity and suitable size. Importantly, these NCs can be very compatibly used as a 980 nm laser-driven PTT agent for the efficient PTT of cancer cells in vitro and in vivo.

Journal ArticleDOI
TL;DR: A series of perovskite electrocatalysts that are highly active for both the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) in an aqueous alkaline electrolyte was presented in this paper.
Abstract: We present a series of perovskite electrocatalysts that are highly active for both the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) in an aqueous alkaline electrolyte. Lantha...

Journal ArticleDOI
Min Bao1, Xiangxin Lou1, Qihui Zhou1, Wen Dong1, Huihua Yuan1, Yanzhong Zhang1 
TL;DR: Biological assay results corroborated that the fibrous PLMC scaffolds were cytocompatible by supporting osteoblast adhesion and proliferation, and functionally promoted biomineralization-relevant alkaline phosphatase expression and mineral deposition.
Abstract: Multifunctional fibrous scaffolds, which combine the capabilities of biomimicry to the native tissue architecture and shape memory effect (SME), are highly promising for the realization of functional tissue-engineered products with minimally invasive surgical implantation possibility In this study, fibrous scaffolds of biodegradable poly(d,l-lactide-co-trimethylene carbonate) (denoted as PDLLA-co-TMC, or PLMC) with shape memory properties were fabricated by electrospinning Morphology, thermal and mechanical properties as well as SME of the resultant fibrous structure were characterized using different techniques And rat calvarial osteoblasts were cultured on the fibrous PLMC scaffolds to assess their suitability for bone tissue engineering It is found that by varying the monomer ratio of DLLA:TMC from 5:5 to 9:1, fineness of the resultant PLMC fibers was attenuated from ca 1500 down to 680 nm This also allowed for readily modulating the glass transition temperature Tg (ie, the switching temperature for actuating shape recovery) of the fibrous PLMC to fall between 192 and 442 °C, a temperature range relevant for biomedical applications in the human body The PLMC fibers exhibited excellent shape memory properties with shape recovery ratios of Rr > 94% and shape fixity ratios of Rf > 98%, and macroscopically demonstrated a fast shape recovery (∼10 s at 39 °C) in the pre-deformed configurations Biological assay results corroborated that the fibrous PLMC scaffolds were cytocompatible by supporting osteoblast adhesion and proliferation, and functionally promoted biomineralization-relevant alkaline phosphatase expression and mineral deposition We envision the wide applicability of using the SME-capable biomimetic scaffolds for achieving enhanced efficacy in repairing various bone defects (eg, as implants for healing bone screw holes or as barrier membranes for guided bone regeneration)

Journal ArticleDOI
TL;DR: A simple layer-by-layer self-assembly technique capable of constructing mesoporous silica nanoparticles (MSNs) into a pH-responsive drug delivery system with enhanced efficacy and biocompatibility is proposed.
Abstract: Surface fuctionalization plays a crucial role in developing efficient nanoparticulate drug-delivery systems by improving their therapeutic efficacy and minimizing adverse effects. Here we propose a simple layer-by-layer self-assembly technique capable of constructing mesoporous silica nanoparticles (MSNs) into a pH-responsive drug delivery system with enhanced efficacy and biocompatibility. In this system, biocompatible polyelectrolyte multilayers of alginate/chitosan were assembled on MSN’s surface to achieve pH-responsive nanocarriers. The functionalized MSNs exhibited improved blood compatibility over the bare MSNs in terms of low hemolytic and cytotoxic activity against human red blood cells. As a proof-of-concept, the anticancer drug doxorubicin (DOX) was loaded into nanocarriers to evaluate their use for the pH-responsive drug release both in vitro and in vivo. The DOX release from nanocarriers was pH dependent, and the release rate was much faster at lower pH than that of at higher pH. The in vitro...

Journal ArticleDOI
TL;DR: In this article, the authors describe a powerful yet economic strategy for fabricating multilevel structured nanofibrous membranes within a single filter medium, which is constructed by the accumulation of bimodal sized and silica nanoparticles (SiO 2 NPs) incorporated electrospun polyacrylonitrile (PAN) membranes.

Journal ArticleDOI
TL;DR: In this article, the poly(biphenyl dianhydride-p-phenylenediamine) (BPDA/PDA) polyimide has been used as matrix in unidirectional carbon nanotube composites for the first time.
Abstract: Carbon nanotubes (CNTs) have high strength and modulus, large aspect ratio, and good electrical and thermal conductivities, which make them attractive for fabricating composite. The poly(biphenyl dianhydride-p-phenylenediamine) (BPDA/PDA) polyimide has good mechanical and thermal performances and is herein used as matrix in unidirectional carbon nanotube composites for the first time. The strength and modulus of the composite increase by 2.73 and 12 times over pure BPDA–PDA polyimide, while its electrical conductivity reaches to 183 S/cm, which is 1018 times over pure polyimide. The composite has excellent high temperature resistance, and its thermal conductivity is beyond what has been achieved in previous studies. The improved properties of the composites are due to the long CNT length, high level of CNT alignment, high CNT volume fraction and good CNT dispersion in polyimide matrix. The composite is promising for applications that require high strength, lightweight, or high electrical and thermal conductivities.

Journal ArticleDOI
Pingping Yu1, Xin Zhao1, Zilong Huang1, Yingzhi Li1, Qinghua Zhang1 
TL;DR: In this article, a symmetric supercapacitor with high energy and power densities was fabricated using a RGO-F/PANI electrode, which can directly serve as an electrode with no binders or conductive additives.
Abstract: Free-standing three-dimensional hierarchical porous reduced graphene oxide foam (RGO-F) was first fabricated by a “dipping and dry” method using nickel foam as a template. Three-dimensional (3D) RGO-F with high conductivity provides large porosity compared to conventional graphene films. Polyaniline (PANI) nanowire arrays aligned on the foam (RGO-F/PANI) were synthesized by in situ polymerization. A symmetric supercapacitor with high energy and power densities was fabricated using a RGO-F/PANI electrode. The highly flexible RGO-F/PANI foam can directly serve as an electrode with no binders or conductive additives. Owing to the well-ordered porous structure and high electrochemical performance of the RGO-F/PANI composite, the symmetric device exhibits high specific capacitance (790 F g−1) and volumetric capacitance (205.4 F cm−3), and it shows a maximum energy density and power density of 17.6 W h kg−1 and 98 kW kg−1. Moreover, the device possesses an excellent cycle life with 80% capacitance retention after 5000 cycles.

Journal ArticleDOI
Pingping Yu1, Yingzhi Li1, Xin Zhao1, Lihao Wu1, Qinghua Zhang1 
02 May 2014-Langmuir
TL;DR: The synthesis of reduced graphene oxide (RGO) sheet wrapped polyaniline (PANI) nanowire arrays grown on nitrogen-doped carbon fiber cloth (eCFC) shows an enhanced capacitive behavior and exhibits excellent charge/discharge rates and a good cycling stability.
Abstract: We report the synthesis of reduced graphene oxide (RGO) sheet wrapped polyaniline (PANI) nanowire arrays grown on nitrogen-doped carbon fiber cloth (eCFC). The RGO coating layer is important to accommodate volume change and mechanical deformation of the coated PANI nanowires arrays during the long-term charge/discharge processes. The resulting hierarchical symmetric supercapacitor based on RGO/PANI/eCFC composites shows an enhanced capacitive behavior with a maximum energy density of 25.4 Wh kg(-1), a maximum power density of 92.2 kW kg(-1) and a specific capacitance of 1145 F g(-1), which is higher than that of PANI/eCFC (1050 F g(-1)) and GO/PANI/eCFC (940 F g(-1)). Moreover, the assembled supercapacitor exhibits excellent charge/discharge rates and a good cycling stability, retaining over 94% of its initial capacitance after 5000 cycles.

Journal ArticleDOI
TL;DR: Cysteine-coated CuS nanoparticles (Cys-CuS NPs) are synthesized as highly efficient PTT agents by a simple aqueous solution method and have great potential as ideal photothermal agents for cancer therapy.
Abstract: The semiconductor compounds have been proven to be promising candidates as a new type of photothermal therapy agent, but unsatisfactory photothermal conversion efficiencies limit their widespread application in photothermal therapy (PTT). Herein, we synthesized cysteine-coated CuS nanoparticles (Cys-CuS NPs) as highly efficient PTT agents by a simple aqueous solution method. The Cys-CuS NPs have a good biocompatibility owing to their biocompatible cysteine coating and exhibit a strong absorption in the near-infrared region due to the localized surface plasma resonances of valence-band free carriers. The photothermal conversion efficiency of Cys-CuS NPs reaches 38.0%, which is much higher than that of the recently reported Cu9S5 and Cu2−xSe nanocrystals. More importantly, tumor growth can be efficiently inhibited in vivo by the fatal heat arising from the excellent photothermal effect of Cys-CuS NPs at a low concentration under the irradiation of a 980 nm laser with a safe power density of 0.72 W cm−2. Therefore, the Cys-CuS NPs have great potential as ideal photothermal agents for cancer therapy.

Journal ArticleDOI
01 May 2014-Small
TL;DR: Fabrication of a high-temperature deep-ultraviolet photodetector working in the solar-blind spectrum range (190-280 nm) is a challenge due to the degradation in the dark current and photoresponse properties, but β-Ga2O3 multi-layered nanobelts with (l00) facet-oriented were demonstrated for the first time to possess excellent mechanical, electrical properties and stability at a high temperature inside a TEM studies.
Abstract: Fabrication of a high-temperature deep-ultraviolet photodetector working in the solar-blind spectrum range (190-280 nm) is a challenge due to the degradation in the dark current and photoresponse properties. Herein, β-Ga2O3 multi-layered nanobelts with (l00) facet-oriented were synthesized, and were demonstrated for the first time to possess excellent mechanical, electrical properties and stability at a high temperature inside a TEM studies. As-fabricated DUV solar-blind photodetectors using (l00) facet-oriented β-Ga2O3 multi-layered nanobelts demonstrated enhanced photodetective performances, that is, high sensitivity, high signal-to-noise ratio, high spectral selectivity, high speed, and high stability, importantly, at a temperature as high as 433 K, which are comparable to other reported semiconducting nanomaterial photodetectors. In particular, the characteristics of the photoresponsivity of the β-Ga2O3 nanobelt devices include a high photoexcited current (>21 nA), an ultralow dark current (below the detection limit of 10(-14) A), a fast time response (<0.3 s), a high R(λ) (≈851 A/W), and a high EQE (~4.2 × 10(3)). The present fabricated facet-oriented β-Ga2O3 multi-layered nanobelt based devices will find practical applications in photodetectors or optical switches for high-temperature environment.

Journal ArticleDOI
TL;DR: In this paper, the synergistic catalytic mechanism of Co3O4 and graphene oxide (GO) nanocomposite in the heterogeneous activation of peroxymonosulfate (PMS) to generate sulfate radicals was studied.

Journal ArticleDOI
TL;DR: In this article, a sandwich-structured PVdF/PMIA/PVdF nanofibrous battery separators with robust mechanical strength and thermal stability are fabricated via a sequential electrospinning technique.
Abstract: Novel, sandwich-structured PVdF/PMIA/PVdF nanofibrous battery separators with robust mechanical strength and thermal stability are fabricated via a sequential electrospinning technique. The nanofibers of the PVdF and the PMIA layers are bonded and interconnected on the interface boundary without any polymer binder or post-treatment. Benefiting from the high porosity of the as-prepared membranes and the introduction of PMIA, the PVdF/PMIA/PVdF composite membranes exhibit high ionic conductivity (2.3 times higher than that of the Celgard membrane), robust tensile strength (13.96 MPa), and excellent thermal stability, sustaining insulation after closing the pores in the PVdF layer. Hot oven testing reveals that the composite membranes exhibit no dimension shrinkage after being exposed to 180 °C for 1 h. Furthermore, the as-prepared-membrane-based Li/LiCoO2 cell shows a higher capacity retention of 93.10% after 100 cycles and better rate performance compared with the cell using the Celgard membrane, providing new insight into the design and development of high-performance rechargeable lithium ion batteries.

Journal ArticleDOI
TL;DR: In this article, the authors describe the manufacturing and testing of graded conventional/auxetic honeycomb cores, which are used to manufacture sandwich panels for flatwise compression and edgewise loading.
Abstract: The work describes the manufacturing and testing of graded conventional/auxetic honeycomb cores. The graded honeycombs are manufactured using Kevlar woven fabric/914 epoxy prepreg using Kirigami techniques, which consist in a combination of Origami and ply-cut processes. The cores are used to manufacture sandwich panels for flatwise compression and edgewise loading. The compressive modulus and compressive strength of stabilized (sandwich) honeycombs are found to be higher than those of bare honeycombs, and with density-averaged properties enhanced compared to other sandwich panels offered in the market place. The modulus and strength of graded sandwich panel under quasi-static edgewise loading vary with different failure mode mechanisms, and offer also improvements towards available panels from open literature. Edgewise impact loading shows a strong directionality of the mechanical response. When the indenter impacts the auxetic portion of the graded core, the strong localization of the damage due to the negative Poisson’s ratio effect contains significantly the maximum dynamic displacement of the sandwich panel.

Journal ArticleDOI
TL;DR: Thanks to the role of FA-directed targeting, the formed multifunctional Au DENPs are able to exert the specific therapeutic efficacy of α-TOS to the FAR-overexpressing cancer cells in vitro and the xenografted tumor model in vivo.

Journal ArticleDOI
TL;DR: In this paper, peak amplitude and peak frequency were selected as the best cluster-definition features from nine AE parameters by Laplacian score and correlation analysis, principal component analysis and k-means++ algorithm and repeatability and similarity analysis of the clusters in AE registration of different specimens.

Journal ArticleDOI
TL;DR: This work provides a new way of PMS activation for decontamination at neutral pH, in particular for phosphate-rich wastewater treatment, and proposes that OH would be the major radical for contamination degradation at pH 7.0 through the radical quenching experiments.