scispace - formally typeset
Search or ask a question
Institution

Donghua University

EducationShanghai, China
About: Donghua University is a education organization based out in Shanghai, China. It is known for research contribution in the topics: Fiber & Nanofiber. The organization has 21155 authors who have published 21841 publications receiving 393091 citations. The organization is also known as: Dōnghuá Dàxué & China Textile University.
Topics: Fiber, Nanofiber, Electrospinning, Membrane, Graphene


Papers
More filters
Journal ArticleDOI
TL;DR: Following the PSO-GSBX approach, some interesting findings about pinned nodes, coupling strengths and the eigenvalues for enhancing the controllability of distributed networks are revealed and can be applied in control science and industrial system.
Abstract: Maximizing the controllability of complex networks by selecting appropriate nodes and designing suitable control gains is an effective way to control distributed complex networks. In this paper, some novel particle swarm optimization (PSO) approaches are developed to enhance the controllability of distributed networks. The proposed PSO algorithm is combined with a global search scheme and a modified simulated binary crossover (MSBX). In addition, the node importance-based method is introduced to study the controllability of distributed complex networks. A set of experiments show that the PSO with the global search and the MSBX (PSO-GSBX) can outperform some well-known evolutionary algorithms and pinning schemes. Following the PSO-GSBX approach, some interesting findings about pinned nodes, coupling strengths and the eigenvalues for enhancing the controllability of distributed networks are revealed. The obtained results and methods are applied in unmanned aerial vehicle (UAV) coordination to show their effectiveness. These findings will help to understand controllability of complex networks and can be applied in control science and industrial system.

141 citations

Journal ArticleDOI
TL;DR: The purpose of the problem addressed is to design an output feedback controller, over a given finite-horizon, such that the H∞ disturbance attenuation level is guaranteed for the nonlinear stochastic polytopic system in the presence of saturated sensor and actuator outputs.
Abstract: This technical note addresses the robust H∞ finite-horizon output feedback control problem for a class of uncertain discrete stochastic nonlinear time-varying systems with both sensor and actuator saturations. In the system under investigation, all the system parameters are allowed to be time-varying, the parameter uncertainties are assumed to be of the polytopic type, and the stochastic nonlinearities are described by statistical means which can cover several classes of well-studied nonlinearities. The purpose of the problem addressed is to design an output feedback controller, over a given finite-horizon, such that the H∞ disturbance attenuation level is guaranteed for the nonlinear stochastic polytopic system in the presence of saturated sensor and actuator outputs. Sufficient conditions are first established for the robust H∞ performance through intensive stochastic analysis, and then a recursive linear matrix inequality (RLMI) approach is employed to design the desired output feedback controller achieving the prescribed H∞ disturbance rejection level. Simulation results demonstrate the effectiveness of the developed controller design scheme.

141 citations

Journal ArticleDOI
01 Sep 2017
TL;DR: It is found that the introduction of Ag3VO4 is in favor of suppressing the electron-hole pair recombination of Bi2WO6, leading to an enhanced photocatalytic activity with good stability and great potential in applications for environmental remediation.
Abstract: Constructing novel semiconductor heterojunctions is one of the most significant approaches to improving the photocatalytic performance of a photocatalyst. Herein, the Ag3VO4/Bi2WO6 heterojunction was prepared through in-situ anchoring Ag3VO4 nanoparticles (size: ∼21 nm) on the surface of Bi2WO6 microflowers (diameter: 2.5–4.5 μm) by a facile deposition route. The photocatalytic activity of these heterojunctions were studied by decomposing cationic dye rhodamine B (RhB), anionic dye methyl orange (MO) and neutral para-chlorophenol (4-CP) under visible light irradiation (λ > 400 nm). Among all the tested catalysts, the heterojunction with a Ag3VO4/Bi2WO6 molar ratio of 0.15/1 displays the maximum activity with the RhB degradation rate constant of up to 0.0392 min−1, a 6.7 or 1.7 times more enhancement compared with the pure Bi2WO6 or Ag3VO4. It is found that the introduction of Ag3VO4 is in favor of suppressing the electron-hole pair recombination of Bi2WO6, leading to an enhanced photocatalytic activity with good stability. The photogenerated holes (h+) and superoxide radicals ( O 2 - ) play critical roles during the photocatalytic process. Ag3VO4/Bi2WO6 will have great potential in applications for environmental remediation due to the facile preparation method and superior photocatalytic activity.

140 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive overview of developments and recent trends in H2 separation technology that uses dense proton-electron conducting ceramic materials and their associated membranes is provided, along with their properties and performance.

140 citations

Journal ArticleDOI
TL;DR: In this paper, audio frequency (AC) plasma of some kind of fluorocarbon chemical was applied to deposit a nanoparticulate hydrophobic film onto a cotton fabric surface, and the measurement of the video contact angle showed that the superhydrophobicity of the cotton fabric was obtained with a treatment of only 30 s. The results showed that textile performances of the plasma-coated fabric were superior to those of Scotchgard-sprayed samples, except for the moisture regain, which was almost the same.
Abstract: The audio frequency (AC) plasma of some kind of fluorocarbon chemical was applied to deposit a nanoparticulate hydrophobic film onto a cotton fabric surface. The measurement of the video contact angle showed that the superhydrophobicity of the cotton fabric was obtained with a treatment of only 30 s. The softness, water retention, moisture regain, color retention, abrasion, friction, and permeability were thoroughly investigated by a standard method that compared the fabric with a commercial Scotchgard-protector-sprayed cotton fabric. The results showed that the textile performances of the plasma-coated fabric were superior to those of Scotchgard-sprayed samples, except for the moisture regain, which was almost the same. A post-treatment at a high temperature was conducive to increasing the hydrophobicity and the recovery of the water repellency of the plasma-coated fabric after it was washed. Atomic force microscopy images and time-of-flight secondary-ion mass spectra of plasma thin films on silicon wafers indicated that some physical and chemical changes took place during the post-treatment process. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1473–1481, 2003

140 citations


Authors

Showing all 21321 results

NameH-indexPapersCitations
Dongyuan Zhao160872106451
Xiang Zhang1541733117576
Seeram Ramakrishna147155299284
Kuo-Chen Chou14348757711
Shuai Liu129109580823
Chao Zhang127311984711
Tao Zhang123277283866
Zidong Wang12291450717
Xinchen Wang12034965072
Zhenyu Zhang118116764887
Benjamin S. Hsiao10860241071
Qian Wang108214865557
Jian Zhang107306469715
Yan Zhang107241057758
Richard B. Kaner10655766862
Network Information
Related Institutions (5)
South China University of Technology
69.4K papers, 1.2M citations

93% related

Dalian University of Technology
71.9K papers, 1.1M citations

90% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

89% related

Hunan University
44.1K papers, 863.1K citations

89% related

Soochow University (Suzhou)
56.5K papers, 1M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202371
2022421
20212,465
20202,190
20192,003
20181,605