scispace - formally typeset
Search or ask a question
Institution

Donghua University

EducationShanghai, China
About: Donghua University is a education organization based out in Shanghai, China. It is known for research contribution in the topics: Fiber & Nanofiber. The organization has 21155 authors who have published 21841 publications receiving 393091 citations. The organization is also known as: Dōnghuá Dàxué & China Textile University.
Topics: Fiber, Nanofiber, Membrane, Electrospinning, Catalysis


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the effects of surface modification on characteristics of jute fiber and mechanical properties of the biocomposite were evaluated, and the experimental results show that surface modification can remove surface impurities and reduce diameter of the jute fibres.
Abstract: A biocomposite was originally fabricated with biodegradable polymer PBS and jute fibre, and the effects of fibre surface modification on characteristics of jute fibre and mechanical properties of the biocomposite were evaluated in this paper. The experimental results show that surface modification can remove surface impurities and reduce diameter of jute fibres. Regarding the mechanical properties of biocomposites, it is observed that the biocomposites with jute fibres treated by 2% NaOH, 2 + 5% NaOH or coupling agent, respectively, an optimum in mechanical properties can obtain at fibre content of 20 wt.%, which exhibit an obvious enhancement in mechanical strength and modulus compared to the ones with untreated jute fibre. Furthermore, surface modification also exhibits less effects on flexural properties compared to tensile properties and more on flexural or tensile modulus than on the strength.

281 citations

Journal ArticleDOI
TL;DR: A brief review of the mechanisms of MIC provides a state of the art insight into MIC mechanisms and it helps the diagnosis and prediction of occurrences of MIC under anaerobic conditions in the oil and gas industry.

279 citations

Journal ArticleDOI
TL;DR: The group has developed a series of chalcogenides with greatly improved NIR photoabsorption as photothermal agents, allowing laser exposure within regulatory limits, and investigated the photothermal bioapplications of hypotoxic oxides, expanding their applications into a new field of photothermal materials.
Abstract: ConspectusDespite the development of medical technology, cancer still remains a great threat to the survival of people all over the world. Photothermal therapy (PTT) is a minimally invasive method for selective photothermal ablation of cancer cells without damages to normal cells. Recently, copper chalcogenide semiconductors have emerged as a promising photothermal agent attributed to strong absorbance in the near-infrared (NIR) region and high photothermal conversion efficiency. An earlier study witnessed a rapid increase in their development for cancer therapy, including CuS, Cu2–xSe and CuTe nanocrystals. However, a barrier is that the minimum laser power intensity for effective PTT is still significantly higher than the conservative limit for human skin exposure. Improving the photothermal conversion efficiency and reducing the laser power density has become a direction for the development of PTT. Furthermore, in an effort to improve the therapeutic efficacy, many multimode therapeutic nanostuctures h...

279 citations

Journal ArticleDOI
TL;DR: In this paper, a novel non-fullerene acceptor L8-BO-F is designed and incorporated into the PM6:BTP-eC9 blend, which shows complementary absorption spectra and cascade energy alignment.
Abstract: The ternary strategy, introducing a third component into a binary blend, opens a simple and promising avenue to improve the power conversion efficiency (PCE) of organic solar cells (OSCs). The judicious selection of an appropriate third component, without sacrificing the photocurrent and voltage output of the OSC, is of significant importance in ternary devices. Herein, highly efficient OSCs fabricated using a ternary approach are demonstrated, wherein a novel non-fullerene acceptor L8-BO-F is designed and incorporated into the PM6:BTP-eC9 blend. The three components show complementary absorption spectra and cascade energy alignment. L8-BO-F and BTP-eC9 are found to form a homogeneous mixed phase, which improves the molecular packing of both the donor and acceptor materials, and optimizes the ternary blend morphology. Moreover, the addition of L8-BO-F into the binary blend suppresses the non-radiative recombination, thus leading to a reduced voltage loss. Consequently, concurrent increases in open-circuit voltage, short-circuit current, and fill factor are realized, resulting in an unprecedented PCE of 18.66% (certified value of 18.2%), which represents the highest efficiency values reported for both single-junction and tandem OSCs so far.

279 citations

Journal ArticleDOI
TL;DR: Fractional complex transform as mentioned in this paper was proposed to convert fractional differential equations into ordinary differential equations, so that all analytical methods devoted to advanced calculus can be easily applied to fractional calculus.
Abstract: Fractional complex transform is proposed to convert fractional differential equations into ordinary differential equations, so that all analytical methods devoted to advanced calculus can be easily applied to fractional calculus. Two examples are given.

278 citations


Authors

Showing all 21321 results

NameH-indexPapersCitations
Dongyuan Zhao160872106451
Xiang Zhang1541733117576
Seeram Ramakrishna147155299284
Kuo-Chen Chou14348757711
Shuai Liu129109580823
Chao Zhang127311984711
Tao Zhang123277283866
Zidong Wang12291450717
Xinchen Wang12034965072
Zhenyu Zhang118116764887
Benjamin S. Hsiao10860241071
Qian Wang108214865557
Jian Zhang107306469715
Yan Zhang107241057758
Richard B. Kaner10655766862
Network Information
Related Institutions (5)
South China University of Technology
69.4K papers, 1.2M citations

93% related

Dalian University of Technology
71.9K papers, 1.1M citations

90% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

89% related

Hunan University
44.1K papers, 863.1K citations

89% related

Soochow University (Suzhou)
56.5K papers, 1M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202371
2022422
20212,466
20202,190
20192,003
20181,605