scispace - formally typeset
Search or ask a question
Institution

Donghua University

EducationShanghai, China
About: Donghua University is a education organization based out in Shanghai, China. It is known for research contribution in the topics: Fiber & Nanofiber. The organization has 21155 authors who have published 21841 publications receiving 393091 citations. The organization is also known as: Dōnghuá Dàxué & China Textile University.
Topics: Fiber, Nanofiber, Electrospinning, Membrane, Graphene


Papers
More filters
Journal ArticleDOI
TL;DR: A porous 3D scaffold based on electrospun gelatin/PLA nanofibers has been prepared for cartilage tissue regeneration and an in vivo study showed that 3DS-2 could enhance the repair of cartilage.
Abstract: Electrospun nanofibers have been used for various biomedical applications. However, electrospinning commonly produces two-dimensional (2D) membranes, which limits the application of nanofibers for the 3D tissue engineering scaffold. In the present study, a porous 3D scaffold (3DS-1) based on electrospun gelatin/PLA nanofibers has been prepared for cartilage tissue regeneration. To further improve the repairing effect of cartilage, a modified scaffold (3DS-2) cross-linked with hyaluronic acid (HA) was also successfully fabricated. The nanofibrous structure, water absorption, and compressive mechanical properties of 3D scaffold were studied. Chondrocytes were cultured on 3D scaffold, and their viability and morphology were examined. 3D scaffolds were also subjected to an in vivo cartilage regeneration study on rabbits using an articular cartilage injury model. The results indicated that 3DS-1 and 3DS-2 exhibited superabsorbent property and excellent cytocompatibility. Both these scaffolds present elastic pr...

227 citations

Journal ArticleDOI
TL;DR: A cobalt-containing metal-organic framework using adenine as a ligand was synthesized and pyrolyzed without any other precursors, forming a cobalt nanoparticle-embedded nitrogen-doped carbon/carbon nanotube framework (Co@N-CNTF) as discussed by the authors.
Abstract: Developing active and stable electrocatalysts of earth-abundant elements towards the oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) still remains a crucial challenge. Herein, a cobalt-containing metal-organic framework using adenine as a ligand was synthesized and pyrolyzed without any other precursors, forming a cobalt nanoparticle-embedded nitrogen-doped carbon/carbon nanotube framework (Co@N-CNTF). Due to the abundant active sites of homogeneously distributed cobalt nanoparticles within nitrogen-doped graphitic layers, the resultant Co@N-CNTF catalysts exhibit an efficient and stable electrocatalytic performance as a tri-functional catalyst towards the ORR, OER and HER, including a high half-wave potential of 0.81 V vs. RHE for the ORR, and a low overpotential at 10 mA cm -2 for the OER (0.35 V) and HER (0.22 V). As a proof-of-concept, the Co@N-CNTF as an OER/HER bifunctional catalyst for full water splitting affords an alkaline electrolyzer with 10 mA cm -2 under a stable voltage of 1.71 V. Moreover, an integrated unit of a water-splitting electrolyzer using the Co@N-CNTF catalysts, which is powered with a rechargeable Zn-air battery using the Co@N-CNTF as an ORR/OER bifunctional catalyst on air electrodes, can operate under ambient conditions with high cycling stability, demonstrating the viability and efficiency of the self-powered water-splitting system.

225 citations

Journal ArticleDOI
Bin Shen1
TL;DR: In this paper, the authors depict the structure of sustainable fashion supply chain including eco-material preparation, sustainable manufacturing, green distribution, green retailing, and ethical consumers based on the extant literature.
Abstract: Sustainability is significantly important for fashion business due to consumers’ increasing awareness of environment. When a fashion company aims to promote sustainability, the main linkage is to develop a sustainable supply chain. This paper contributes to current knowledge of sustainable supply chain in the textile and clothing industry. We first depict the structure of sustainable fashion supply chain including eco-material preparation, sustainable manufacturing, green distribution, green retailing, and ethical consumers based on the extant literature. We study the case of the Swedish fast fashion company, HM (2) the HM and (3) the H&M CEO may consider the degrees of human wellbeing and economic wellbeing, instead of environmental wellbeing when launching the online shopping channel in a specific country.

225 citations

Journal ArticleDOI
TL;DR: In this article, the performance of silkworm and spider dragline fibers under stretching is compared based on a combined structural and mechanical analysis, and the molecular origin of the strain-hardening of spider silk filaments is addressed in comparison to rubber and Kevlar.
Abstract: Spider dragline silk, as a type of high-performance natural fiber, displays a unique combination of tensile strength and extensibility that gives rise to a greater toughness than any other natural or synthetic fiber. In contrast to silkworm silk, spider dragline silk displays a remarkable strain-hardening character for which the origin remains unknown. In this paper, the performance of silkworm silk and spider dragline fibers under stretching is compared based on a combined structural and mechanical analysis. The molecular origin of the strain-hardening of spider silk filaments is addressed in comparison to rubber and Kevlar. Unlike rubber, the occurrence of strain-hardening can be attributed to the unfolding of the intramolecular β-sheets in spider silk fibrils, which serve as “molecular spindles” to store lengthy molecular chains in space compactly. With the progressive unfolding and alignment of protein during fiber extension, protein backbones and nodes of the molecular network are stretched to support the load. Consequently the dragline filaments become gradually hardened, enabling efficient energy buffering when an abseiling spider escapes from a predator. As distinct from synthetic materials such as rubber (elastomers), this particular structural feature of spider draglines not only enables quick energy absorption, but also efficiently suppresses the drastic oscillation which occurs upon an impact. The mimicking of this strain-hardening character of spider silk will give rise to the design and fabrication of new advanced functional materials with applications in kinetic energy buffering and absorption.

225 citations

Journal ArticleDOI
TL;DR: In this article, the thermal decomposition temperatures, weight losses and potential reactions of the pyrolysis as well as resulted fragments, were analyzed, which are helpful in understanding of mechanisms of flame-retardant cotton fabrics.

224 citations


Authors

Showing all 21321 results

NameH-indexPapersCitations
Dongyuan Zhao160872106451
Xiang Zhang1541733117576
Seeram Ramakrishna147155299284
Kuo-Chen Chou14348757711
Shuai Liu129109580823
Chao Zhang127311984711
Tao Zhang123277283866
Zidong Wang12291450717
Xinchen Wang12034965072
Zhenyu Zhang118116764887
Benjamin S. Hsiao10860241071
Qian Wang108214865557
Jian Zhang107306469715
Yan Zhang107241057758
Richard B. Kaner10655766862
Network Information
Related Institutions (5)
South China University of Technology
69.4K papers, 1.2M citations

93% related

Dalian University of Technology
71.9K papers, 1.1M citations

90% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

89% related

Hunan University
44.1K papers, 863.1K citations

89% related

Soochow University (Suzhou)
56.5K papers, 1M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202371
2022421
20212,465
20202,190
20192,003
20181,605