scispace - formally typeset
Search or ask a question
Institution

Donghua University

EducationShanghai, China
About: Donghua University is a education organization based out in Shanghai, China. It is known for research contribution in the topics: Fiber & Nanofiber. The organization has 21155 authors who have published 21841 publications receiving 393091 citations. The organization is also known as: Dōnghuá Dàxué & China Textile University.
Topics: Fiber, Nanofiber, Electrospinning, Membrane, Graphene


Papers
More filters
Journal ArticleDOI
Yang Si1, Jianyong Yu1, Xiaomin Tang1, Jianlong Ge1, Bin Ding1 
TL;DR: This work reports a novel strategy to create fibrous, isotropically bonded elastic reconstructed (FIBER) NFAs with a hierarchical cellular structure and superelasticity by combining electrospun nanofibres and the fibrous freeze-shaping technique.
Abstract: Three-dimensional nanofibrous aerogels (NFAs) that are both highly compressible and resilient would have broad technological implications for areas ranging from electrical devices and bioengineering to damping materials; however, creating such NFAs has proven extremely challenging. Here we report a novel strategy to create fibrous, isotropically bonded elastic reconstructed (FIBER) NFAs with a hierarchical cellular structure and superelasticity by combining electrospun nanofibres and the fibrous freeze-shaping technique. Our approach causes the intrinsically lamellar deposited electrospun nanofibres to assemble into elastic bulk aerogels with tunable densities and desirable shapes on a large scale. The resulting FIBER NFAs exhibit densities of >0.12 mg cm(-3), rapid recovery from deformation, efficient energy absorption and multifunctionality in terms of the combination of thermal insulation, sound absorption, emulsion separation and elasticity-responsive electric conduction. The successful synthesis of such fascinating materials may provide new insights into the design and development of multifunctional NFAs for various applications.

817 citations

Journal ArticleDOI
TL;DR: In this article, a generalized Gronwall inequality with singularity was used to study the dependence of the solution of a fractional differential equation on the order and the initial condition of the equation.

763 citations

Journal ArticleDOI
TL;DR: A bioinspired mineral hydrogel is developed to fabricate a novel type of mechanically adaptable ionic skin sensor that is compliant, self-healable, and can sense subtle pressure changes, such as a gentle finger touch, human motion, or even small water droplets.
Abstract: In the past two decades, artificial skin-like materials have received increasing research interests for their broad applications in artificial intelligence, wearable devices, and soft robotics. However, profound challenges remain in terms of imitating human skin because of its unique combination of mechanical and sensory properties. In this work, a bioinspired mineral hydrogel is developed to fabricate a novel type of mechanically adaptable ionic skin sensor. Due to its unique viscoelastic properties, the hydrogel-based capacitive sensor is compliant, self-healable, and can sense subtle pressure changes, such as a gentle finger touch, human motion, or even small water droplets. It might not only show great potential in applications such as artificial intelligence, human/machine interactions, personal healthcare, and wearable devices, but also promote the development of next-generation mechanically adaptable intelligent skin-like devices.

745 citations

Journal ArticleDOI
TL;DR: A prerequisite for the development of the NIR laser-induced PTA is to gain access to biocompatible and effi cient photothermal coupling agents, including gold (Au) nanostructures, including supramolecularly assembled nanoparticles.
Abstract: Photothermal ablation (PTA) therapy has attracted much interest in recent years as a minimally invasive alternative to conventional approaches, such as surgery and chemotherapy, for therapeutic intervention of specifi c biological targets. [ 1 , 2 ] In particular, near-infrared (NIR, λ = 700–1100 nm) laser-induced PTA, which converts NIR optical energy into thermal energy, has attracted increasing attention, because the NIR laser is absorbed less by biological tissues and the typical penetration depth of the NIR (such as 980 nm) light can be several centimeters in biological tissues. [ 3 , 4 ] A prerequisite for the development of the NIR laser-induced PTA is to gain access to biocompatible and effi cient photothermal coupling agents. As the well-known NIR photothermal conversion agents, gold (Au) nanostructures, including supramolecularly assembled nanoparticles, [ 5–8 ]

732 citations

Journal ArticleDOI
TL;DR: The basic conceptual framework of variational iteration technique with application to nonlinear problems is outlined and a very useful formulation for determining approximately the period of a nonlinear oscillator is suggested.
Abstract: Variational iteration method has been favourably applied to various kinds of nonlinear problems. The main property of the method is in its flexibility and ability to solve nonlinear equations accurately and conveniently. In this paper recent trends and developments in the use of the method are reviewed. Major applications to nonlinear wave equation, nonlinear fractional differential equations, nonlinear oscillations and nonlinear problems arising in various engineering applications are surveyed. The confluence of modern mathematics and symbol computation has posed a challenge to developing technologies capable of handling strongly nonlinear equations which cannot be successfully dealt with by classical methods. Variational iteration method is uniquely qualified to address this challenge. The flexibility and adaptation provided by the method have made the method a strong candidate for approximate analytical solutions. This paper outlines the basic conceptual framework of variational iteration technique with application to nonlinear problems. Both achievements and limitations are discussed with direct reference to approximate solutions for nonlinear equations. A new iteration formulation is suggested to overcome the shortcoming. A very useful formulation for determining approximately the period of a nonlinear oscillator is suggested. Examples are given to illustrate the solution procedure.

722 citations


Authors

Showing all 21321 results

NameH-indexPapersCitations
Dongyuan Zhao160872106451
Xiang Zhang1541733117576
Seeram Ramakrishna147155299284
Kuo-Chen Chou14348757711
Shuai Liu129109580823
Chao Zhang127311984711
Tao Zhang123277283866
Zidong Wang12291450717
Xinchen Wang12034965072
Zhenyu Zhang118116764887
Benjamin S. Hsiao10860241071
Qian Wang108214865557
Jian Zhang107306469715
Yan Zhang107241057758
Richard B. Kaner10655766862
Network Information
Related Institutions (5)
South China University of Technology
69.4K papers, 1.2M citations

93% related

Dalian University of Technology
71.9K papers, 1.1M citations

90% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

89% related

Hunan University
44.1K papers, 863.1K citations

89% related

Soochow University (Suzhou)
56.5K papers, 1M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202371
2022421
20212,465
20202,190
20192,003
20181,605