scispace - formally typeset
Search or ask a question
Institution

Donghua University

EducationShanghai, China
About: Donghua University is a education organization based out in Shanghai, China. It is known for research contribution in the topics: Fiber & Nanofiber. The organization has 21155 authors who have published 21841 publications receiving 393091 citations. The organization is also known as: Dōnghuá Dàxué & China Textile University.
Topics: Fiber, Nanofiber, Electrospinning, Membrane, Graphene


Papers
More filters
Journal ArticleDOI
15 Feb 2016-Energy
TL;DR: In this article, the effect of process conditions on the yield and physicochemical properties of hydrochar was examined by varying carbonization temperature over the range of 220-300°C and varying residence time over a range of 2-10h.

212 citations

Journal ArticleDOI
TL;DR: The combination of photothermal‐ and chemotherapies demonstrates better effects of therapy on cancer treatment than individual therapy approaches in vitro and in vivo, and is beneficial to delivery of DOX into cancer cells for chemotherapy.
Abstract: Copper chalcogenides have been demonstrated to be a promising photothermal agent due to their high photothermal conversion efficiency, synthetic simplicity, and low cost. However, the hydrophobic and less biocompatible characteristics associated with their synthetic processes hamper widely biological applications. An alternative strategy for improving hydrophilicity and biocompatibility is to coat the copper chalcogenide nanomaterials with silica shell. Herein, the rational preparation design results in successful coating mesoporous silica (mSiO(2)) on as-synthesized Cu9S5 nanocrystals, forming Cu9S5@mSiO(2)-PEG core-shell nanostructures. As-prepared Cu9S5@mSiO(2)-PEG core-shell nanostructures show low cytotoxicity and excellent blood compatibility, and are effectively employed for photothermal ablation of cancer cells and infrared thermal imaging. Moreover, anticancer drug of doxorubicin (DOX)-loaded Cu9S5@mSiO(2)-PEG core-shell nanostructures show pH sensitive release profile and are therefore beneficial to delivery of DOX into cancer cells for chemotherapy. Importantly, the combination of photothermal- and chemotherapies demonstrates better effects of therapy on cancer treatment than individual therapy approaches in vitro and in vivo.

212 citations

Journal ArticleDOI
TL;DR: In this paper, sufficient conditions are established under which the addressed state estimation problem is recast as solving a convex optimization problem via the semidefinite programming method.
Abstract: In this paper, the state estimation problem is investigated for a class of discrete time-delay nonlinear complex networks with randomly occurring phenomena from sensor measurements. The randomly occurring phenomena include randomly occurring sensor saturations (ROSSs) and randomly varying sensor delays (RVSDs) that result typically from networked environments. A novel sensor model is proposed to describe the ROSSs and the RVSDs within a unified framework via two sets of Bernoulli-distributed white sequences with known conditional probabilities. Rather than employing the commonly used Lipschitz-type function, a more general sector-like nonlinear function is used to describe the nonlinearities existing in the network. The purpose of the addressed problem is to design a state estimator to estimate the network states through available output measurements such that, for all probabilistic sensor saturations and sensor delays, the dynamics of the estimation error is guaranteed to be exponentially mean-square stable and the effect from the exogenous disturbances to the estimation accuracy is attenuated at a given level by means of an H∞-norm. In terms of a novel Lyapunov-Krasovskii functional and the Kronecker product, sufficient conditions are established under which the addressed state estimation problem is recast as solving a convex optimization problem via the semidefinite programming method. A simulation example is provided to show the usefulness of the proposed state estimation conditions.

212 citations

Journal ArticleDOI
TL;DR: Combined morphological observation of cells after hematoxylin and eosin staining, and flow cytometric analysis of cell cycle show that the acetylated Au DENPs do not appreciably affect the cell morphology, viability, and cell cycle, indicating their good biocompatibility at the given concentration range.

212 citations

Journal ArticleDOI
Fei Li1, Lin Zhou1, Ji-Xuan Liu1, Yongcheng Liang1, Guo-Jun Zhang1 
TL;DR: In this article, high-entropy pyrochlore type structures based on rare-earth zirconates are successfully produced by conventional solid-state reaction method by using six rare earth oxides and ZrO2 as the raw powders and the results demonstrate that the (5RE1/5)2Zr2O7 have been formed after heated at 1000°C.
Abstract: High-entropy pyrochlore-type structures based on rare-earth zirconates are successfully produced by conventional solid-state reaction method. Six rare-earth oxides (La2O3, Nd2O3, Sm2O3, Eu2O3, Gd2O3, and Y2O3) and ZrO2 are used as the raw powders. Five out of the six rare-earth oxides with equimolar ratio and ZrO2 are mixed and sintered at different temperatures for investigating the reaction process. The results demonstrate that the high-entropy pyrochlores (5RE1/5)2Zr2O7 have been formed after heated at 1000°C. The (5RE1/5)2Zr2O7 are highly sintering resistant and possess excellent thermal stability. The thermal conductivities of the (5RE1/5)2Zr2O7 high-entropy ceramics are below 1 W·m–1·K–1 in the temperature range of 300–1200°C. The (5RE1/5)2Zr2O7 can be potential thermal barrier coating materials.

212 citations


Authors

Showing all 21321 results

NameH-indexPapersCitations
Dongyuan Zhao160872106451
Xiang Zhang1541733117576
Seeram Ramakrishna147155299284
Kuo-Chen Chou14348757711
Shuai Liu129109580823
Chao Zhang127311984711
Tao Zhang123277283866
Zidong Wang12291450717
Xinchen Wang12034965072
Zhenyu Zhang118116764887
Benjamin S. Hsiao10860241071
Qian Wang108214865557
Jian Zhang107306469715
Yan Zhang107241057758
Richard B. Kaner10655766862
Network Information
Related Institutions (5)
South China University of Technology
69.4K papers, 1.2M citations

93% related

Dalian University of Technology
71.9K papers, 1.1M citations

90% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

89% related

Hunan University
44.1K papers, 863.1K citations

89% related

Soochow University (Suzhou)
56.5K papers, 1M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202371
2022421
20212,465
20202,190
20192,003
20181,605