scispace - formally typeset
Search or ask a question
Institution

Donghua University

EducationShanghai, China
About: Donghua University is a education organization based out in Shanghai, China. It is known for research contribution in the topics: Fiber & Nanofiber. The organization has 21155 authors who have published 21841 publications receiving 393091 citations. The organization is also known as: Dōnghuá Dàxué & China Textile University.
Topics: Fiber, Nanofiber, Electrospinning, Membrane, Graphene


Papers
More filters
Journal ArticleDOI
TL;DR: An unprecedented reaction for the direct trifluoromethylthiolation and fluorination of alkyl alcohols using AgSCF3 and nBu4NI has been developed and is tolerant of different functional groups.
Abstract: An unprecedented reaction for the direct trifluoromethylthiolation and fluorination of alkyl alcohols using AgSCF3 and nBu4NI has been developed. The trifluoromethylthiolated compounds and alkyl fluorides were selectively formed by changing the ratio of AgSCF3/nBu4NI. This protocol is tolerant of different functional groups and might be applicable to late-stage trifluoromethylthiolation of alcohols.

149 citations

Journal ArticleDOI
27 May 2008-Polymer
TL;DR: In this article, a self-bundling electrospinning method for continuous polymer yarns was proposed, in which a grounded needle tip was used to induce the self bundling of polymer nanofibers at the beginning of the electro-spinning process.

148 citations

Journal ArticleDOI
TL;DR: The approach in this study has successfully demonstrated that these two techniques can be combined to produce double-layered tubular scaffolds containing both melt-spun macrofibers and electrospun submicron fibers.

148 citations

Journal ArticleDOI
Xiong Li1, Min Wang1, Ce Wang1, Cheng Cheng1, Xuefen Wang1 
TL;DR: The extremely high liquid entry pressure of water (LEPw, 175 ± 3 kPa) and the robust fiber morphology of the APAN immobilized Ag nanocluster endowed the as-prepared membranes with excellent separation capability and stability for oil/water separation by a solely gravity-driven process.
Abstract: Superhydrophobic and superoleophilic electrospun nanofibrous membranes exhibiting excellent oil/water separation performance were green fabricated by a facile route combining the amination of electrospun polyacrylonitrile (APAN) nanofibers and immobilization of a Ag nanocluster with an electroless plating technique, followed by n-hexadecyl mercaptan (RSH) surface modification. By introducing the hierarchically rough structures and low surface energy, the pristine superhydrophilic APAN nanofibrous membranes could be endowed with a superhydrophobicity with water contact angle of 171.1 ± 2.3°, a superoleophilicity with oil contact angle of 0° and a self-cleaning surface arising from the extremely low water contact angle hysteresis (3.0 ± 0.6°) and a low water-adhesion property. Surface morphology studies have indicated that the selective wettability of the resultant membranes could be manipulated by tuning the electroless plating time as well as the hierarchical structures. More importantly, the extremely hi...

148 citations

Journal ArticleDOI
TL;DR: In this article, the authors reveal that fascinating phenomena arise when the diameter of the electrospun nanofibers is less than 100nm, and Vibration-melt-electrospinning is uniquely qualified to address this challenge.
Abstract: Electrospun nanofiber technology bridges the gap between deterministic laws (Newton mechanics) and probabilistic laws (quantum mechanics). Our research reveals that fascinating phenomena arise when the diameter of the electrospun nanofibers is less than 100 nm. The nano-effect has been demonstrated for unusual strength, high surface energy, surface reactivity, high thermal and electric conductivity. Dragline silk is made of many nano-fibers with diameter of about 20 nm, thus it can make full use of nano-effects. It is a challenge to developing technologies capable of preparing for nanofibers within 100 nm. Vibration-melt-electrospinning is uniquely qualified to address this challenge. The flexibility and adaptation provided by the method have made the method a strong candidate for producing nanofibers on such a scale. The application of Sirofil technology to strengthen nanofibers is also addressed, E-infinity theory is emphasized as a challenging theory for nano-scale technology and science.

148 citations


Authors

Showing all 21321 results

NameH-indexPapersCitations
Dongyuan Zhao160872106451
Xiang Zhang1541733117576
Seeram Ramakrishna147155299284
Kuo-Chen Chou14348757711
Shuai Liu129109580823
Chao Zhang127311984711
Tao Zhang123277283866
Zidong Wang12291450717
Xinchen Wang12034965072
Zhenyu Zhang118116764887
Benjamin S. Hsiao10860241071
Qian Wang108214865557
Jian Zhang107306469715
Yan Zhang107241057758
Richard B. Kaner10655766862
Network Information
Related Institutions (5)
South China University of Technology
69.4K papers, 1.2M citations

93% related

Dalian University of Technology
71.9K papers, 1.1M citations

90% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

89% related

Hunan University
44.1K papers, 863.1K citations

89% related

Soochow University (Suzhou)
56.5K papers, 1M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202371
2022421
20212,465
20202,190
20192,003
20181,605