scispace - formally typeset
Search or ask a question

Showing papers by "Drexel University published in 2019"


Journal ArticleDOI
TL;DR: This work aims to demonstrate the efforts towards in-situ applicability of EMMARM, which aims to provide real-time information about concrete mechanical properties such as E-modulus and compressive strength.

1,480 citations



Journal ArticleDOI
22 Nov 2019-Science
TL;DR: Examples indicate that nanostructured materials and nanoarchitectured electrodes can provide solutions for designing and realizing high-energy, high-power, and long-lasting energy storage devices.
Abstract: Lithium-ion batteries, which power portable electronics, electric vehicles, and stationary storage, have been recognized with the 2019 Nobel Prize in chemistry. The development of nanomaterials and their related processing into electrodes and devices can improve the performance and/or development of the existing energy storage systems. We provide a perspective on recent progress in the application of nanomaterials in energy storage devices, such as supercapacitors and batteries. The versatility of nanomaterials can lead to power sources for portable, flexible, foldable, and distributable electronics; electric transportation; and grid-scale storage, as well as integration in living environments and biomedical systems. To overcome limitations of nanomaterials related to high reactivity and chemical instability caused by their high surface area, nanoparticles with different functionalities should be combined in smart architectures on nano- and microscales. The integration of nanomaterials into functional architectures and devices requires the development of advanced manufacturing approaches. We discuss successful strategies and outline a roadmap for the exploitation of nanomaterials for enabling future energy storage applications, such as powering distributed sensor networks and flexible and wearable electronics.

941 citations


Journal ArticleDOI
TL;DR: In this article, the best practices for measuring and reporting metrics such as capacitance, capacity, coulombic and energy efficiencies, electrochemical impedance, and the energy and power densities of capacitive and pseudocapacitive materials are discussed.
Abstract: Due to the tremendous importance of electrochemical energy storage, numerous new materials and electrode architectures for batteries and supercapacitors have emerged in recent years. Correctly characterizing these systems requires considerable time, effort, and experience to ensure proper metrics are reported. Many new nanomaterials show electrochemical behavior somewhere in between conventional double‐layer capacitor and battery electrode materials, making their characterization a non‐straightforward task. It is understandable that some researchers may be misinformed about how to rigorously characterize their materials and devices, which can result in inflation of their reported data. This is not uncommon considering the current state of the field nearly requires record breaking performance for publication in high‐impact journals. Incorrect characterization and data reporting misleads both the materials and device development communities, and it is the shared responsibility of the community to follow rigorous reporting methodologies to ensure published results are reliable to ensure constructive progress. This tutorial aims to clarify the main causes of inaccurate data reporting and to give examples of how researchers should proceed. The best practices for measuring and reporting metrics such as capacitance, capacity, coulombic and energy efficiencies, electrochemical impedance, and the energy and power densities of capacitive and pseudocapacitive materials are discussed.

642 citations


Journal ArticleDOI
TL;DR: Highly concentrated, additive-free, aqueous and organic MXene-based inks that can be used for high-resolution extrusion and inkjet printing are reported.
Abstract: Direct printing of functional inks is critical for applications in diverse areas including electrochemical energy storage, smart electronics and healthcare. However, the available printable ink formulations are far from ideal. Either surfactants/additives are typically involved or the ink concentration is low, which add complexity to the manufacturing and compromises the printing resolution. Here, we demonstrate two types of two-dimensional titanium carbide (Ti3C2Tx) MXene inks, aqueous and organic in the absence of any additive or binary-solvent systems, for extrusion printing and inkjet printing, respectively. We show examples of all-MXene-printed structures, such as micro-supercapacitors, conductive tracks and ohmic resistors on untreated plastic and paper substrates, with high printing resolution and spatial uniformity. The volumetric capacitance and energy density of the all-MXene-printed micro-supercapacitors are orders of magnitude greater than existing inkjet/extrusion-printed active materials. The versatile direct-ink-printing technique highlights the promise of additive-free MXene inks for scalable fabrication of easy-to-integrate components of printable electronics.

611 citations


Journal ArticleDOI
Mark Chaisson1, Mark Chaisson2, Ashley D. Sanders, Xuefang Zhao3, Xuefang Zhao4, Ankit Malhotra, David Porubsky5, David Porubsky6, Tobias Rausch, Eugene J. Gardner7, Oscar L. Rodriguez8, Li Guo9, Ryan L. Collins4, Xian Fan10, Jia Wen11, Robert E. Handsaker12, Robert E. Handsaker4, Susan Fairley13, Zev N. Kronenberg2, Xiangmeng Kong14, Fereydoun Hormozdiari15, Dillon Lee16, Aaron M. Wenger17, Alex Hastie, Danny Antaki18, Thomas Anantharaman, Peter A. Audano2, Harrison Brand4, Stuart Cantsilieris2, Han Cao, Eliza Cerveira, Chong Chen10, Xintong Chen7, Chen-Shan Chin17, Zechen Chong10, Nelson T. Chuang7, Christine C. Lambert17, Deanna M. Church, Laura Clarke13, Andrew Farrell16, Joey Flores19, Timur R. Galeev14, David U. Gorkin20, David U. Gorkin18, Madhusudan Gujral18, Victor Guryev5, William Haynes Heaton, Jonas Korlach17, Sushant Kumar14, Jee Young Kwon21, Ernest T. Lam, Jong Eun Lee, Joyce V. Lee, Wan-Ping Lee, Sau Peng Lee, Shantao Li14, Patrick Marks, Karine A. Viaud-Martinez19, Sascha Meiers, Katherine M. Munson2, Fabio C. P. Navarro14, Bradley J. Nelson2, Conor Nodzak11, Amina Noor18, Sofia Kyriazopoulou-Panagiotopoulou, Andy Wing Chun Pang, Yunjiang Qiu18, Yunjiang Qiu20, Gabriel Rosanio18, Mallory Ryan, Adrian M. Stütz, Diana C.J. Spierings5, Alistair Ward16, Anne Marie E. Welch2, Ming Xiao22, Wei Xu, Chengsheng Zhang, Qihui Zhu, Xiangqun Zheng-Bradley13, Ernesto Lowy13, Sergei Yakneen, Steven A. McCarroll12, Steven A. McCarroll4, Goo Jun23, Li Ding24, Chong-Lek Koh25, Bing Ren20, Bing Ren18, Paul Flicek13, Ken Chen10, Mark Gerstein, Pui-Yan Kwok26, Peter M. Lansdorp27, Peter M. Lansdorp5, Peter M. Lansdorp28, Gabor T. Marth16, Jonathan Sebat18, Xinghua Shi11, Ali Bashir8, Kai Ye9, Scott E. Devine7, Michael E. Talkowski12, Michael E. Talkowski4, Ryan E. Mills3, Tobias Marschall6, Jan O. Korbel13, Evan E. Eichler2, Charles Lee21 
TL;DR: A suite of long-read, short- read, strand-specific sequencing technologies, optical mapping, and variant discovery algorithms are applied to comprehensively analyze three trios to define the full spectrum of human genetic variation in a haplotype-resolved manner.
Abstract: The incomplete identification of structural variants (SVs) from whole-genome sequencing data limits studies of human genetic diversity and disease association. Here, we apply a suite of long-read, short-read, strand-specific sequencing technologies, optical mapping, and variant discovery algorithms to comprehensively analyze three trios to define the full spectrum of human genetic variation in a haplotype-resolved manner. We identify 818,054 indel variants (<50 bp) and 27,622 SVs (≥50 bp) per genome. We also discover 156 inversions per genome and 58 of the inversions intersect with the critical regions of recurrent microdeletion and microduplication syndromes. Taken together, our SV callsets represent a three to sevenfold increase in SV detection compared to most standard high-throughput sequencing studies, including those from the 1000 Genomes Project. The methods and the dataset presented serve as a gold standard for the scientific community allowing us to make recommendations for maximizing structural variation sensitivity for future genome sequencing studies.

606 citations


Journal ArticleDOI
TL;DR: Two-dimensional transition metal carbides and nitrides (MXenes) have emerged as highly conductive and stable materials, of promise for electronic applications, and in situ electric biasing and transmission electron microscopy are used to investigate the effect of surface termination and intercalation on electronic properties.
Abstract: MXenes are an emerging family of highly-conductive 2D materials which have demonstrated state-of-the-art performance in electromagnetic interference shielding, chemical sensing, and energy storage. To further improve performance, there is a need to increase MXenes' electronic conductivity. Tailoring the MXene surface chemistry could achieve this goal, as density functional theory predicts that surface terminations strongly influence MXenes' Fermi level density of states and thereby MXenes' electronic conductivity. Here, we directly correlate MXene surface de-functionalization with increased electronic conductivity through in situ vacuum annealing, electrical biasing, and spectroscopic analysis within the transmission electron microscope. Furthermore, we show that intercalation can induce transitions between metallic and semiconductor-like transport (transitions from a positive to negative temperature-dependence of resistance) through inter-flake effects. These findings lay the groundwork for intercalation- and termination-engineered MXenes, which promise improved electronic conductivity and could lead to the realization of semiconducting, magnetic, and topologically insulating MXenes.

605 citations


Journal ArticleDOI
07 Nov 2019
TL;DR: This paper investigated and described local norms in the CSCW and HCI literature and proposed guidelines for reporting on reliability in qualitative research using inter-rater reliability as a central example of a form of agreement.
Abstract: What does reliability mean for building a grounded theory? What about when writing an auto-ethnography? When is it appropriate to use measures like inter-rater reliability (IRR)? Reliability is a familiar concept in traditional scientific practice, but how, and even whether to establish reliability in qualitative research is an oft-debated question. For researchers in highly interdisciplinary fields like computer-supported cooperative work (CSCW) and human-computer interaction (HCI), the question is particularly complex as collaborators bring diverse epistemologies and training to their research. In this article, we use two approaches to understand reliability in qualitative research. We first investigate and describe local norms in the CSCW and HCI literature, then we combine examples from these findings with guidelines from methods literature to help researchers answer questions like: "should I calculate IRR?" Drawing on a meta-analysis of a representative sample of CSCW and HCI papers from 2016-2018, we find that authors use a variety of approaches to communicate reliability; notably, IRR is rare, occurring in around 1/9 of qualitative papers. We reflect on current practices and propose guidelines for reporting on reliability in qualitative research using IRR as a central example of a form of agreement. The guidelines are designed to generate discussion and orient new CSCW and HCI scholars and reviewers to reliability in qualitative research.

499 citations


Journal ArticleDOI
TL;DR: In this paper, the authors report consensus therapeutic guidelines for agent selection and dosing of colistin and polymyxin antibiotics for optimal use in adult patients, as endorsed by the American College of Clinical Pharmacy (ACCP), Infectious Diseases Society of America (IDSA), International Society of Anti-Infective Pharmacology (ISAP), Society for Critical Care Medicine (SCCM), and Society of Infectious diseases Pharmacists (SIDP).
Abstract: The polymyxin antibiotics colistin (polymyxin E) and polymyxin B became available in the 1950s and thus did not undergo contemporary drug development procedures. Their clinical use has recently resurged, assuming an important role as salvage therapy for otherwise untreatable gram-negative infections. Since their reintroduction into the clinic, significant confusion remains due to the existence of several different conventions used to describe doses of the polymyxins, differences in their formulations, outdated product information, and uncertainties about susceptibility testing that has led to lack of clarity on how to optimally utilize and dose colistin and polymyxin B. We report consensus therapeutic guidelines for agent selection and dosing of the polymyxin antibiotics for optimal use in adult patients, as endorsed by the American College of Clinical Pharmacy (ACCP), Infectious Diseases Society of America (IDSA), International Society of Anti-Infective Pharmacology (ISAP), Society for Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP). The European Society for Clinical Microbiology and Infectious Diseases (ESCMID) endorses this document as a consensus statement. The overall conclusions in the document are endorsed by the European Committee on Antimicrobial Susceptibility Testing (EUCAST). We established a diverse international expert panel to make therapeutic recommendations regarding the pharmacokinetic and pharmacodynamic properties of the drugs and pharmacokinetic targets, polymyxin agent selection, dosing, dosage adjustment and monitoring of colistin and polymyxin B, use of polymyxin-based combination therapy, intrathecal therapy, inhalation therapy, toxicity, and prevention of renal failure. The treatment guidelines provide the first ever consensus recommendations for colistin and polymyxin B therapy that are intended to guide optimal clinical use.

446 citations


Journal ArticleDOI
31 Oct 2019-PLOS ONE
TL;DR: This study introduces a flexible and generic methodology based on a significant extension of the general conceptual framework of citation indexing for delineating the literature of a research field and provides a practical connection between studies of science from local and global perspectives.
Abstract: Systematic scientometric reviews, empowered by computational and visual analytic approaches, offer opportunities to improve the timeliness, accessibility, and reproducibility of studies of the literature of a field of research. On the other hand, effectively and adequately identifying the most representative body of scholarly publications as the basis of subsequent analyses remains a common bottleneck in the current practice. What can we do to reduce the risk of missing something potentially significant? How can we compare different search strategies in terms of the relevance and specificity of topical areas covered? In this study, we introduce a flexible and generic methodology based on a significant extension of the general conceptual framework of citation indexing for delineating the literature of a research field. The method, through cascading citation expansion, provides a practical connection between studies of science from local and global perspectives. We demonstrate an application of the methodology to the research of literature-based discovery (LBD) and compare five datasets constructed based on three use scenarios and corresponding retrieval strategies, namely a query-based lexical search (one dataset), forward expansions starting from a groundbreaking article of LBD (two datasets), and backward expansions starting from a recently published review article by a prominent expert in LBD (two datasets). We particularly discuss the relevance of areas captured by expansion processes with reference to the query-based scientometric visualization. The method used in this study for comparing bibliometric datasets is applicable to comparative studies of search strategies.

440 citations


07 Dec 2019
TL;DR: The National Institute of Health (NIH) now uses BMI to define a person as underweight, normal weight, overweight, or obese instead of traditional height vs. weight charts.
Abstract: Body mass index or BMI is a statistical index using a person's weight and height to provide an estimate of body fat in males and females of any age. It is calculated by taking a person's weight, in kilograms, divided by their height, in meters squared, or BMI = weight (in kg)/ height^2 (in m^2). The number generated from this equation is then the individual's BMI number. The National Institute of Health (NIH) now uses BMI to define a person as underweight, normal weight, overweight, or obese instead of traditional height vs. weight charts. These classifications for BMI are in use by the NIH and the World Health Organization (WHO) for White, Hispanic, and Black individuals. The cutoffs underestimate the obesity risk in the Asian and South Asian populations, so their classification has slight alterations. The BMI number and classifications are listed below. However, individual variations do exist, and BMI is insufficient as the sole means of classifying a person as obese or malnourished. In certain populations, like elite athletes and body-builders, an elevated BMI does not directly correlate to their health status due to their increased muscle mass and weight falsely increasing their BMI. Moreover, in the pediatric population, BMI allows comparison between children of the same sex and age. For children, a BMI that is less than the fifth percentile is underweight and above the 95th percentile is considered obese.

Journal ArticleDOI
01 May 2019
TL;DR: The Mn+1AXn (or MAX) phases as mentioned in this paper are characterized by a unique combination of both metallic and ceramic properties, which are precursors for MXenes and the dramatic increase in interest in the latter for a large host of applications.
Abstract: The Mn+1AXn, or MAX, phases are nanolayered, hexagonal, machinable, early transition-metal carbides and nitrides, where n = 1, 2, or 3, M is an early transition metal, A is an A-group element (mostly groups 13 and 14), and X is C and/or N. These phases are characterized by a unique combination of both metallic and ceramic properties. The fact that these phases are precursors for MXenes and the dramatic increase in interest in the latter for a large host of applications render the former even more valuable. Herein we describe the structure of most, if not all, MAX phases known to date. This review covers ≈155 MAX compositions. Currently, 16 A elements and 14 M elements have been incorporated in these phases. The recent discovery of both quaternary in- and out-of-plane ordered MAX phases opens the door to the discovery of many more. The chemical diversity of the MAX phases holds the key to eventually optimizing properties for prospective applications. Since many of the newer quaternary (and higher) phases have yet to be characterized, much work remains to be done.

Journal ArticleDOI
TL;DR: In this article, MXene flakes are added into PAN solutions at a weight ratio of 2':'1 (MXene' :'PAN) in the spinning dope, producing fiber mats with up to 35 wt% MXene.
Abstract: Free-standing Ti3C2Tx MXene/carbon nanofiber electrodes are prepared via electrospinning Ti3C2Tx MXene flakes with polyacrylonitrile (PAN) and carbonizing the fiber networks. Using this simple fabrication method, delaminated MXene flakes are embedded within carbon nanofibers and these fiber mats are used as electrodes without binders or additives. Unlike coated electrodes, which may suffer from the active material delaminating from the substrate during folding or bending, composite electrodes are stable and durable. Previous attempts to incorporate Ti3C2Tx MXene into electrospun fibers resulted in low mass loadings, ∼1 wt% Ti3C2Tx MXene. In this work, MXene flakes are added into PAN solutions at a weight ratio of 2 : 1 (MXene : PAN) in the spinning dope, producing fiber mats with up to 35 wt% MXene. Composite electrodes have high areal capacitance, up to 205 mF cm−2 at 50 mV s−1, almost three times that of pure carbonized PAN nanofibers (70 mF cm−2 at 50 mV s−1). Compared with electrospun nanofibers spray-coated with Ti3C2Tx, these composite fibers exhibit double the areal capacitance at 10 mV s−1. This method can be used to produce MXene composite fibers using a variety of polymers, which have potential applications beyond energy storage, including filtration, adsorption, and electrocatalysis, where fibers with high aspect ratio, accessible surface, and porosity are desirable.

Journal ArticleDOI
TL;DR: In this paper, the authors summarize the theoretical progress to understand double-beta decay, the expectations and implications under various particle physics models, and the nuclear physics challenges that affect the precise predictions of the decay half-life.
Abstract: Neutrinoless double-beta decay is a forbidden, lepton-number-violating nuclear transition whose observation would have fundamental implications for neutrino physics, theories beyond the Standard Model, and cosmology. In this review, we summarize the theoretical progress to understand this process, the expectations and implications under various particle physics models, and the nuclear physics challenges that affect the precise predictions of the decay half-life. We also provide a synopsis of the current and future large-scale experiments that aim to discover this process in physically well-motivated half-life ranges.

Journal ArticleDOI
TL;DR: A comprehensive study of comorbidity within mental disorders is undertaken, by providing temporally ordered age- and sex-specific pairwise estimates between the major groups of mental disorders, and to develop an interactive website to visualize all results and guide future research and clinical practice.
Abstract: Importance: Individuals with mental disorders often develop comorbidity over time. Past studies of comorbidity have often restricted analyses to a subset of disorders and few studies have provided absolute risks of later comorbidity. Objectives: To undertake a comprehensive study of comorbidity within mental disorders, by providing temporally ordered age- and sex-specific pairwise estimates between the major groups of mental disorders, and to develop an interactive website to visualize all results and guide future research and clinical practice. Design, Setting, and Participants: This population-based cohort study included all individuals born in Denmark between January 1, 1900, and December 31, 2015, and living in the country between January 1, 2000, and December 31, 2016. The analyses were conducted between June 2017 and May 2018. Main Outcomes and Measures: Danish health registers were used to identify mental disorders, which were examined within the broad 10-level International Statistical Classification of Diseases and Related Health Problems, 10th Revision, subchapter groups (eg, codes F00-F09 and F10-F19). For each temporally ordered pair of disorders, overall and lagged hazard ratios and 95% CIs were calculated using Cox proportional hazards regression models. Absolute risks were estimated using competing risks survival analyses. Estimates for each sex were generated. Results: A total of 5940778 persons were included in this study (2958293 men and 2982485 women; mean [SD] age at beginning of follow-up, 32.1 [25.4] years). They were followed up for 83.9 million person-years. All mental disorders were associated with an increased risk of all other mental disorders when adjusting for sex, age, and calendar time (hazard ratios ranging from 2.0 [95% CI, 1.7-2.4] for prior intellectual disabilities and later eating disorders to 48.6 [95% CI, 46.6-50.7] for prior developmental disorders and later intellectual disabilities). The hazard ratios were temporally patterned, with higher estimates during the first year after the onset of the first disorder, but with persistently elevated rates during the entire observation period. Some disorders were associated with substantial absolute risks of developing specific later disorders (eg, 30.6% [95% CI, 29.3%-32.0%] of men and 38.4% [95% CI, 37.5%-39.4%] of women with a diagnosis of mood disorders before age 20 years developed neurotic disorders within the following 5 years). Conclusions and Relevance: Comorbidity within mental disorders is pervasive, and the risk persists over time. This study provides disorder-, sex-, and age-specific relative and absolute risks of the comorbidity of mental disorders. Web-based interactive data visualization tools are provided for clinical utility..

Journal ArticleDOI
TL;DR: The discovery of two-dimensional transition metal carbides and nitrides (MXenes) in 2011 has expanded the pool of nanomaterials available for a variety of applications.

Journal ArticleDOI
TL;DR: In this paper, the authors show how simply changing the solvent of an electrolyte system can drastically influence the pseudocapacitive charge storage of the two-dimensional titanium carbide, Ti3C2 (a representative member of the MXene family).
Abstract: Pseudocapacitive energy storage in supercapacitor electrodes differs significantly from the electrical double-layer mechanism of porous carbon materials, which requires a change from conventional thinking when choosing appropriate electrolytes. Here we show how simply changing the solvent of an electrolyte system can drastically influence the pseudocapacitive charge storage of the two-dimensional titanium carbide, Ti3C2 (a representative member of the MXene family). Measurements of the charge stored by Ti3C2 in lithium-containing electrolytes with nitrile-, carbonate- and sulfoxide-based solvents show that the use of a carbonate solvent doubles the charge stored by Ti3C2 when compared with the other solvent systems. We find that the chemical nature of the electrolyte solvent has a profound effect on the arrangement of molecules/ions in Ti3C2, which correlates directly to the total charge being stored. Having nearly completely desolvated lithium ions in Ti3C2 for the carbonate-based electrolyte leads to high volumetric capacitance at high charge–discharge rates, demonstrating the importance of considering all aspects of an electrochemical system during development.

Journal ArticleDOI
TL;DR: In this paper, an ultraconformal poly(3,4-ethylenedioxythiophene) skin was used to conformally coat both the primary and secondary particles of these oxides.
Abstract: Despite their relatively high capacity, layered lithium transition metal oxides suffer from crystal and interfacial structural instability under aggressive electrochemical and thermal driving forces, leading to rapid performance degradation and severe safety concerns. Here we report a transformative approach using an oxidative chemical vapour deposition technique to build a protective conductive polymer (poly(3,4-ethylenedioxythiophene)) skin on layered oxide cathode materials. The ultraconformal poly(3,4-ethylenedioxythiophene) skin facilitates the transport of lithium ions and electrons, significantly suppresses the undesired layered to spinel/rock-salt phase transformation and the associated oxygen loss, mitigates intergranular and intragranular mechanical cracking, and effectively stabilizes the cathode–electrolyte interface. This approach remarkably enhances the capacity and thermal stability under high-voltage operation. Building a protective skin at both secondary and primary particle levels of layered oxides offers a promising design strategy for Ni-rich cathodes towards high-energy, long-life and safe lithium-ion batteries. Intensive research efforts are underway to enable applications of layered lithium transition metal oxides in batteries. Here the authors report an oxidative chemical vapour deposition technique to conformally coat both the primary and the secondary particles of these oxides to unleash potential applications.

Journal ArticleDOI
TL;DR: In this article, the electronic properties of Ti3C2Tx for different surface terminations, as achieved by different annealing temperatures, with the help of photoelectron spectroscopy, inverse photo-electron, and density functional theory calculations, were investigated.
Abstract: MXenes, an emerging family of 2D transition metal carbides and nitrides, have shown promise in various applications, such as energy storage, electromagnetic interference shielding, conductive thin films, photonics, and photothermal therapy. Their metallic nature, wide range of optical absorption, and tunable surface chemistry are the key to their success in those applications. The physical properties of MXenes are known to be strongly dependent on their surface terminations. In this study, we investigated the electronic properties of Ti3C2Tx for different surface terminations, as achieved by different annealing temperatures, with the help of photoelectron spectroscopy, inverse photoelectron spectroscopy, and density functional theory calculations. We find that fluorine occupies solely the face-centered cubic adsorption site, whereas oxygen initially occupies at least two different adsorption sites, followed by a rearrangement after fluorine desorption at high annealing temperatures. The measured electroni...

Journal ArticleDOI
TL;DR: In this article, the most important breakthroughs in the synthesis of MXenes and high-quality ultrathin 2D transition metal carbide and nitride films are reviewed and summarized.
Abstract: In 2011, a new family of two dimensional (2D) carbides, carbonitrides and nitrides – labeled MXenes – was discovered. Since then the number of papers on these materials has increased exponentially for several reasons amongst them: their hydrophilic nature, excellent electronic conductivities and ease of synthesizing large quantities in water. This unique combination of properties and ease of processing has positioned them as enabling materials for a large, and quite varied, host of applications from energy storage to electromagnetic shielding, transparent conductive electrodes, electrocatalysis, to name a few. Since the initial synthesis of Ti3C2 in hydrofluoric acid, many more compositions were discovered, and different synthesis pathways were explored. Most of the work done so far has been conducted on top-down synthesis where a layered parent compound is etched and then exfoliated. Three bottom-up synthesis methods, chemical vapor deposition, a template method and plasma enhanced pulsed laser deposition have been reported. The latter methods enable the synthesis of not only high-quality ultrathin 2D transition metal carbide and nitride films, but also those that could not be synthesized by selective etching. This article reviews and summarizes the most important breakthroughs in the synthesis of MXenes and high-quality ultrathin 2D transition metal carbide and nitride films.

Journal ArticleDOI
TL;DR: This paper concentrates on the state-of-the-art survey of the BWM based on the in-depth analysis over the publications concerning this method published from 2015 to 26th, January 2019.
Abstract: After the first paper regarding the Best Worst Method (BWM) was published in Omega in 2015 (J. Rezaei, Best-worst multi-criteria decision-making method, Omega 53 (2015) 49–57), it has attracted many scholars’ attention due to the efficiency of this method in reducing the times of pairwise comparisons and the good performance in maintaining consistency between judgments. Lots of researches related to this method have been published over the past several years. This paper concentrates on the state-of-the-art survey of the BWM based on the in-depth analysis over the publications concerning this method published from 2015 to 26th, January 2019. This paper intends to answer five questions about the BWM: (1) How does this method perform in bibliometric analysis? (2) Why to propose this method and what is it? (3) Which integrations that the BWM were focused on and which areas did they apply to? (4) What extensions of this method were investigated? (5) What are the challenges and future research directions regarding this method? In view of the fact that the research on this method is still in infancy, this paper has guiding significance for the later research related to the BWM. From the theoretical point of view, the reasonable value of consistency ratio, the inconsistency improving methods, the uncertain extensions of the BWM and the techniques for solving multi-optimality model in the BWM are good research issues that need to be further investigated in the future. From the perspective of application, the software packages for this method, the various integrations of this method, the wider application areas, and the international cooperation on this method are good topics to consider.

Journal ArticleDOI
TL;DR: This review focuses on the anti-inflammatory actions of flavonoids against chronic illnesses such as cancer, diabetes, cardiovascular diseases, and neuroinflammation with a special focus on apigenin, a relatively less toxic and non-mutagenic flavonoid with remarkable pharmacodynamics.
Abstract: Inflammation has been reported to be intimately linked to the development or worsening of several non-infectious diseases. A number of chronic conditions such as cancer, diabetes, cardiovascular disorders, autoimmune diseases, and neurodegenerative disorders emerge as a result of tissue injury and genomic changes induced by constant low-grade inflammation in and around the affected tissue or organ. The existing therapies for most of these chronic conditions sometimes leave more debilitating effects than the disease itself, warranting the advent of safer, less toxic, and more cost-effective therapeutic alternatives for the patients. For centuries, flavonoids and their preparations have been used to treat various human illnesses, and their continual use has persevered throughout the ages. This review focuses on the anti-inflammatory actions of flavonoids against chronic illnesses such as cancer, diabetes, cardiovascular diseases, and neuroinflammation with a special focus on apigenin, a relatively less toxic and non-mutagenic flavonoid with remarkable pharmacodynamics. Additionally, inflammation in the central nervous system (CNS) due to diseases such as multiple sclerosis (MS) gives ready access to circulating lymphocytes, monocytes/macrophages, and dendritic cells (DCs), causing edema, further inflammation, and demyelination. As the dearth of safe anti-inflammatory therapies is dire in the case of CNS-related disorders, we reviewed the neuroprotective actions of apigenin and other flavonoids. Existing epidemiological and pre-clinical studies present considerable evidence in favor of developing apigenin as a natural alternative therapy against chronic inflammatory conditions.

Journal ArticleDOI
TL;DR: N-MoS2/CN possesses superior HER activity with an overpotential of 114 mV at 10 mA cm-2 and excellent stability over 10 h, delivering one of best MoS2-based HER electrocatalysts, and opens a new venue for optimizing materials with enhanced accessible catalytic sites for energy-related applications.
Abstract: The activity and accessibility of MoS2 edge sites are critical to deliver high hydrogen evolution reaction (HER) efficiency. Here, a porous carbon network confining ultrasmall N-doped MoS2 nanocrystals (N-MoS2/CN) is fabricated by a self-templating strategy, which realizes synergistically structural and electronic modulations of MoS2 edges. Experiments and density functional theory calculations demonstrate that the N dopants could activate MoS2 edges for HER, while the porous carbon network could deliver high accessibility of the active sites from N-MoS2 nanocrystals. Consequently, N-MoS2/CN possesses superior HER activity with an overpotential of 114 mV at 10 mA cm-2 and excellent stability over 10 h, delivering one of best MoS2-based HER electrocatalysts. Moreover, this study opens a new venue for optimizing materials with enhanced accessible catalytic sites for energy-related applications.

Journal ArticleDOI
TL;DR: In this paper, the surface terminations of three transition metal carbide MXenes (Ti3C2Tx, Mo2CTx, and Nb2CTX) were investigated up to 1500 °C under a He atmosphere.
Abstract: Two-dimensional (2D) transition-metal carbides and nitrides (MXenes) have attracted significant attention due to their electronic, electrochemical, chemical, and optical properties. However, understanding of their thermal stability is still lacking. To date, MXenes are synthesized via top-down wet chemical etching, which intrinsically results in surface terminations. Here, we provide detailed insight into the surface terminations of three carbide MXenes (Ti3C2Tx, Mo2CTx, and Nb2CTx) by performing thermal gravimetric analysis with mass spectrometry analysis (TA–MS) up to 1500 °C under a He atmosphere. This specific technique enables probing surface terminations including hydroxyl (−OH), oxy (═O), and fluoride (−F) and intercalated species, such as salts and structural water. The MXene hydrophilicity depends on the type of etching (hydrofluoric acid concentration and/or mixed acid composition) and subsequent delamination conditions. We show that the amount of structural water in Ti3C2Tx increases with decre...

Journal ArticleDOI
01 Oct 2019
TL;DR: In this paper, a review of the structure, synthesis, and chemistry of transition metal carbides and nitrides is presented, with examples of their properties and potential applications that partially explain why these materials have become so popular.
Abstract: Two dimensional (2D) materials have attracted significant attention in the past decade for their high application potential to address some of society’s most pressing issues such as energy storage and the scarcity of potable water. One of the latest, and relatively large, family of 2D materials is transition-metal carbides and nitrides, called MXenes. Since the initial synthesis of Ti3C2 in hydrofluoric acid in 2011, almost 30 other new compositions and at least eight different synthesis pathways have been reported. In this review, we overview the structure, synthesis, and chemistry of MXenes, with examples of their properties and potential applications that partially explain why these materials have become so popular.

Journal ArticleDOI
TL;DR: It is shown that two-dimensional titanium carbide or carbonitride nanosheets, known as MXenes, can be used as a conductive binder for silicon electrodes produced by a simple and scalable slurry-casting technique without the need of any other additives.
Abstract: The ever-increasing demands for advanced lithium-ion batteries have greatly stimulated the quest for robust electrodes with a high areal capacity. Producing thick electrodes from a high-performance active material would maximize this parameter. However, above a critical thickness, solution-processed films typically encounter electrical/mechanical problems, limiting the achievable areal capacity and rate performance as a result. Herein, we show that two-dimensional titanium carbide or carbonitride nanosheets, known as MXenes, can be used as a conductive binder for silicon electrodes produced by a simple and scalable slurry-casting technique without the need of any other additives. The nanosheets form a continuous metallic network, enable fast charge transport and provide good mechanical reinforcement for the thick electrode (up to 450 µm). Consequently, very high areal capacity anodes (up to 23.3 mAh cm−2) have been demonstrated.

Journal ArticleDOI
TL;DR: In this article, an asymmetric supercapacitor with the GC/MoO3-x and GC/MnO2 nanocomposites as anode and cathode, respectively, exhibits an ultrahigh energy of 150'Wh'kg−1, corresponding to an impressive volumetric energy density of 319'Wh´L−1.

Journal ArticleDOI
TL;DR: The hybrid aerogel with high electrical conductivity, good mechanical strength, and superior EMI shielding performance is a promising material for inhibiting EMI pollution.
Abstract: Lightweight materials with high electrical conductivity and robust mechanical properties are highly desirable for electromagnetic interference (EMI) shielding in modern portable and highly integrated electronics. Herein, a three-dimensional (3D) porous Ti3C2Tx/carbon nanotube (CNT) hybrid aerogel was fabricated via a bidirectional freezing method for lightweight EMI shielding application. The synergism of the lamellar and porous structure of the MXene/CNT hybrid aerogels contributed extensively to their excellent electrical conductivity (9.43 S cm-1) and superior electromagnetic shielding effectiveness (EMI SE) value of 103.9 dB at 3 mm thickness at the X-band frequency, the latter of which is the best value reported for synthetic porous nanomaterials. The CNT reinforcement in the MXene/CNT hybrid aerogels enhanced the mechanical robustness and increased the compressional modulus by 9661% relative to that of the pristine MXene aerogel. The hybrid aerogel with high electrical conductivity, good mechanical strength, and superior EMI shielding performance is a promising material for inhibiting EMI pollution.

Journal ArticleDOI
22 Feb 2019-Science
TL;DR: It is found that the DT did not erupt in three discrete large pulses and that >90% of DT volume erupted in <1 million years, with ~75% emplaced post-KPB, suggesting that either the release of climate-modifying gases is not directly related to eruptive volume or DT volcanism was not the source of Late Cretaceous climate change.
Abstract: Late Cretaceous records of environmental change suggest that Deccan Traps (DT) volcanism contributed to the Cretaceous-Paleogene boundary (KPB) ecosystem crisis. However, testing this hypothesis requires identification of the KPB in the DT. We constrain the location of the KPB with high-precision argon-40/argon-39 data to be coincident with changes in the magmatic plumbing system. We also found that the DT did not erupt in three discrete large pulses and that >90% of DT volume erupted in <1 million years, with ~75% emplaced post-KPB. Late Cretaceous records of climate change coincide temporally with the eruption of the smallest DT phases, suggesting that either the release of climate-modifying gases is not directly related to eruptive volume or DT volcanism was not the source of Late Cretaceous climate change.

Journal ArticleDOI
TL;DR: In this article, the authors proposed a pseudocapacitive anode material for asymmetric supercapacitors using MXenes, a rapidly growing large group of 2D transition metal carbides, nitrides and carbonitrides.
Abstract: DOI: 10.1002/aenm.201802917 Compared to other pseudocapacitive materials, CPs are attractive due to their facile synthesis, intrinsic conductivity, good flexibility, and high redox contributions.[7] Polyaniline (PANI), polypyrrole (PPy), and poly(3,4-ethylenedioxythiophene) (PEDOT) are among the commonly studied polymers for supercapacitors.[11] However, in spite of focus on improving the performance of CPs as anode materials,[7,11,12] efforts to match them with pseudocapacitive cathode materials are still underway. It is important to note that the target material needs to be stable under negative potentials in acidic electrolytes, because CPs show the best electrochemical performance in acidic electrolytes under positive potentials.[6] Currently available choices for negative electrodes are mostly carbons and metal oxides.[13] However, majority of carbon-based and metal oxide electrodes show hydrogen evolution under modest negative potentials in low-pH media.[14] Although carbons with a low content of surface functionalities may have an extended voltage window, they cannot match CP in capacitance due to lack of redox contribution to energy storage. Finding cathode materials with high pseudocapacitance in acidic electrolytes is still a challenge, which hinders practical use of CP in electrochemical capacitors. In search of negative electrodes for CP-utilizing asymmetric devices, MXenes may offer a viable option due to their metallic conductivity and high redox capacitance under negative potential in acidic electrolytes.[15] MXenes, a rapidly growing large group of 2D transition metal carbides, nitrides, and carbonitrides, have shown a great potential for a range of applications, particularly, for supercapacitors.[16,17] Specifically, delaminated Ti3C2Tx has shown outstanding capacitance values up to ≈1500 F cm−3 (380 F g−1) in aqueous electrolytes in a three-electrode configuration.[15] By using a set of electrochemical experiments coupled with in situ X-ray absorption spectroscopy (XAS), it has been shown that the changes in electrode potential correlate almost linearly to variations in the titanium oxidation state, confirming the predominantly pseudocapacitive charge storage mechanism in acidic electrolyte (1 m H2SO4). In another effort,[19] when charge storage mechanism was investigated using in situ Raman spectroscopy in three different sulfatecontaining aqueous electrolytes, it became clear that bonding between oxygen functional groups and hydronium ion from H2SO4 electrolyte occurs upon charging. During discharge, the reversible bonding/debonding alter the oxidation state of Ti, resulting in high redox capacitance in acidic electrolyte. In Conducting polymers (CPs) are attractive pseudocapacitive materials which show the highest capacitance under positive potentials in aqueous protic electrolytes. One way to expand their voltage window (thus energy density) in aqueous electrolytes is to manufacture asymmetric supercapacitors using distinctly different anodes. However, CPs lack matching pseudocapacitive anode materials that can perform well in protic electrolytes (e.g., sulfuric acid). 2D titanium carbide (Ti3C2Tx), MXene, as a universal pseudocapacitive anode material for a range of CPs, such as polyaniline, polypyrrole, and poly(3,4-ethylenedioxythiophene) deposited on reduced graphene oxide (rGO) sheets, is reported here. All-pseudocapacitive organic–inorganic asymmetric devices with MXene cathodes and rGO–polymer anodes can operate in voltage windows up to 1.45 V in 3 m H2SO4. Most importantly, these devices show outstanding cycling performance, outperforming many reported asymmetric pseudocapacitors.