scispace - formally typeset
Search or ask a question
Institution

École normale supérieure de Cachan

EducationCachan, Île-de-France, France
About: École normale supérieure de Cachan is a education organization based out in Cachan, Île-de-France, France. It is known for research contribution in the topics: Decidability & Finite element method. The organization has 2717 authors who have published 5585 publications receiving 175925 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors describe the implementation of a quantum key distribution (QKD) system using a single-photon source, operating at night in open air, and test the effect of attenuation on the polarized encoded photons for inferring the longer distance performance of their system.
Abstract: We describe the implementation of a quantum key distribution (QKD) system using a single-photon source, operating at night in open air. The single- photon source at the heart of the functional and reliable set-up relies on the pulsed excitation of a single nitrogen-vacancy colour centre in a diamond nanocrystal. We tested the effect of attenuation on the polarized encoded photons for inferring the longer distance performance of our system. For strong attenuation, the use of pure single-photon states gives measurable advantage over systems relying on weak attenuated laser pulses. The results are in good agreement with theoretical models developed to assess QKD security.

142 citations

Journal ArticleDOI
TL;DR: It is found that oncogene activation by promoter insertion is the most powerful mechanism of early vector-induced oncogenesis and this mechanism becomes predominant when the enhancer activity of the internal promoter is shielded by the presence of a synthetic chromatin insulator cassette.

142 citations

Journal ArticleDOI
TL;DR: The Q148H mutation is responsible for resistance to Raltegravir whereas the G140S mutation increases viral fitness in the G 140S/Q148H context.
Abstract: Raltegravir (MK-0518) is the first integrase (IN) inhibitor to be approved by the US FDA and is currently used in clinical treatment of viruses resistant to other antiretroviral compounds. Virological failure of Raltegravir treatment is associated with mutations in the IN gene following two main distinct genetic pathways involving either the N155 or Q148 residue. Importantly, in most cases, an additional mutation at the position G140 is associated with the Q148 pathway. Here, we investigated the viral DNA kinetics for mutants identified in Raltegravir-resistant patients. We found that (i) integration is impaired for Q148H when compared with the wild-type, G140S and G140S/Q148H mutants; and (ii) the N155H and G140S mutations confer lower levels of resistance than the Q148H mutation. We also characterized the corresponding recombinant INs properties. Enzymatic performances closely parallel ex vivo studies. The Q148H mutation ‘freezes’ IN into a catalytically inactive state. By contrast, the conformational transition converting the inactive form into an active form is rescued by the G140S/Q148H double mutation. In conclusion, the Q148H mutation is responsible for resistance to Raltegravir whereas the G140S mutation increases viral fitness in the G140S/Q148H context. Altogether, these results account for the predominance of G140S/Q148H mutants in clinical trials using Raltegravir.

142 citations

Journal ArticleDOI
TL;DR: The application of the eXtended finite element method (X-FEM) to thermal problems with moving heat sources and phase boundaries is presented and the ability of the method to capture the highly localized, transient solution in the vicinity of a heat source or material interface is presented.
Abstract: The application of the eXtended finite element method (X-FEM) to thermal problems with moving heat sources and phase boundaries is presented. Of particular interest is the ability of the method to capture the highly localized, transient solution in the vicinity of a heat source or material interface. This is effected through the use of a time-dependent basis formed from the union of traditional shape functions with a set of evolving enrichment functions. The enrichment is constructed through the partition of unity framework, so that the system of equations remains sparse and the resulting approximation is conforming. In this manner, local solutions and arbitrary discontinuities that cannot be represented by the standard shape functions are captured with the enrichment functions. A standard time-projection algorithm is employed to account for the time-dependence of the enrichment, and an iterative strategy is adopted to satisfy local interface conditions. The separation of the approximation into classical shape functions that remain fixed in time and the evolving enrichment leads to a very efficient solution strategy. The robustness and utility of the method is demonstrated with several benchmark problems involving moving heat sources and phase transformations.

141 citations

Journal ArticleDOI
TL;DR: In this paper, the physical, and chemical properties, and hydration reaction of ground granulated blast furnace slag (GGBS) have been investigated in the context of concrete and concrete.
Abstract: With the increased industrialization, generation of industrial by-products has increased significantly. There are many types of industrial by-products depending upon the industry. Utilization of such types of by-products has become an enormous challenge. One such type of by-product is ground granulated blast furnace slag (GGBS) which is produced from the blast-furnaces of iron and steel industries. GGBS is very useful in the design and development of high quality cement paste/mortar and concrete. This paper presents comprehensive details of the physical, and chemical properties, and hydration reaction. It also covers the workability, setting times, compressive strength, chloride and sulfate resistance of cement paste and mortar.

141 citations


Authors

Showing all 2722 results

NameH-indexPapersCitations
Shi Xue Dou122202874031
Olivier Hermine111102643779
John R. Reynolds10560750027
Shaul Mukamel95103040478
Tomás Torres8862528223
Ifor D. W. Samuel7460523151
Serge Abiteboul7327824576
Stéphane Roux6862719123
Zeger Debyser6740416531
Louis Nadjo6426412596
Praveen K. Thallapally6419012110
Andrew Travers6319313537
Shoji Takeuchi6369214704
Bineta Keita6327412053
Yves Mély6236813478
Network Information
Related Institutions (5)
École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

92% related

École Normale Supérieure
99.4K papers, 3M citations

91% related

Georgia Institute of Technology
119K papers, 4.6M citations

91% related

University of Paris-Sud
52.7K papers, 2.1M citations

90% related

University of Paris
174.1K papers, 5M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202222
202121
202029
201958
201879