scispace - formally typeset
Search or ask a question
Institution

École normale supérieure de Cachan

EducationCachan, Île-de-France, France
About: École normale supérieure de Cachan is a education organization based out in Cachan, Île-de-France, France. It is known for research contribution in the topics: Decidability & Nonlinear system. The organization has 2717 authors who have published 5585 publications receiving 175925 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a perovskite microcavity was realized between a dielectric mirror and a metallic mirror, where the design of the microcave can be varied at will, so that detuning or Rabi splitting can be precisely chosen.
Abstract: We have realized Perot–Fabry microcavities containing a two-dimensional layered perovskite-type semiconductor: (C6H5C2H4–NH3)2PbI4 between a dielectric mirror and a metallic mirror. A strong coupling regime between the perovskite exciton and the confined photon mode has been evidenced at room temperature from angular-resolved reflectivity experiments, anticrossings as large as 190 meV are observed between the excitonic and cavity modes. We have shown that the design of the microcavity can be varied at will, so that the detuning or the Rabi splitting can be precisely chosen. The emission of the polaritonic low energy branch has been observed.

90 citations

Journal ArticleDOI
TL;DR: In this article, an optimal time-varying parking fee is charged at zero rate when there is queuing and eliminates queuing when the rate is non-zero, and the benefit of a substitute: a parking fee at the workplace is studied.

90 citations

Journal ArticleDOI
TL;DR: It is demonstrated that specific cation binding at two discrete sites situated between adjacent subunits along the long-pitch helix drive actin polymerization and determine the filament bending rigidity.
Abstract: The assembly of actin monomers into filaments and networks plays vital roles throughout eukaryotic biology, including intracellular transport, cell motility, cell division, determining cellular shape, and providing cells with mechanical strength. The regulation of actin assembly and modulation of filament mechanical properties are critical for proper actin function. It is well established that physiological salt concentrations promote actin assembly and alter the overall bending mechanics of assembled filaments and networks. However, the molecular origins of these salt-dependent effects, particularly if they involve nonspecific ionic strength effects or specific ion-binding interactions, are unknown. Here, we demonstrate that specific cation binding at two discrete sites situated between adjacent subunits along the long-pitch helix drive actin polymerization and determine the filament bending rigidity. We classify the two sites as “polymerization” and “stiffness” sites based on the effects that mutations at the sites have on salt-dependent filament assembly and bending mechanics, respectively. These results establish the existence and location of the cation-binding sites that confer salt dependence to the assembly and mechanics of actin filaments.

90 citations

Journal ArticleDOI
TL;DR: In this paper, the shape of subsequent yield surfaces was kept constant in these models for simplicity reasons but unlike experimental observations, the authors have explained the need to take into account yield surface distortion in macroscopic modeling and have therefore proposed a constitutive model but only for biaxial loadings.

90 citations

Journal ArticleDOI
TL;DR: It is shown that a dimer made of two gold nanospheres exhibits a remarkable efficiency for second-harmonic generation under femtosecond optical excitation, and this nanometer-size light source might be used for high-resolution near-field optical microscopy.
Abstract: We show that a dimer made of two gold nanospheres exhibits a remarkable efficiency for second-harmonic generation under femtosecond optical excitation. The detectable nonlinear emission for the given particle size and excitation wavelength arises when the two nanoparticles are as close as possible to contact, as in situ controlled and measured using the tip of an atomic force microscope. The excitation wavelength dependence of the second-harmonic signal supports a coupled plasmon resonance origin with radiation from the dimer gap. This nanometer-size light source might be used for high-resolution near-field optical microscopy.

90 citations


Authors

Showing all 2722 results

NameH-indexPapersCitations
Shi Xue Dou122202874031
Olivier Hermine111102643779
John R. Reynolds10560750027
Shaul Mukamel95103040478
Tomás Torres8862528223
Ifor D. W. Samuel7460523151
Serge Abiteboul7327824576
Stéphane Roux6862719123
Zeger Debyser6740416531
Louis Nadjo6426412596
Praveen K. Thallapally6419012110
Andrew Travers6319313537
Shoji Takeuchi6369214704
Bineta Keita6327412053
Yves Mély6236813478
Network Information
Related Institutions (5)
École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

92% related

École Normale Supérieure
99.4K papers, 3M citations

91% related

Georgia Institute of Technology
119K papers, 4.6M citations

91% related

University of Paris-Sud
52.7K papers, 2.1M citations

90% related

University of Paris
174.1K papers, 5M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202222
202121
202029
201958
201879