scispace - formally typeset
Search or ask a question
Institution

École normale supérieure de Cachan

EducationCachan, Île-de-France, France
About: École normale supérieure de Cachan is a education organization based out in Cachan, Île-de-France, France. It is known for research contribution in the topics: Decidability & Finite element method. The organization has 2717 authors who have published 5585 publications receiving 175925 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: As the design of novel molecular fragments is of key importance for the future of organic electronics, the first examples of the use of dihydroindeno[1,2b]fluorene (1) and diHydroindenofluorenes (2) are reported, which show the high potential of this building block, but also its versatility.
Abstract: The future of organic electronics is driven by the synthesis and the study of novel molecular fragments for the construction of highly efficient polymers or oligomers. In this context, polyand oligophenylene derivatives constitute an important class of highly promising molecules, which have been widely studied for the last two decades. Of particular interest in the chemistry and physics of oligophenylenes is the bridged-para-terphenyl unit, namely, 6,12dihydroindeno[1,2-b]fluorene (Scheme 1). Although it has been known since the 1950s, investigations of the dihydroindeno[1,2-b]fluorenyl core only started a decade ago thanks to the pioneering work of M llen, which made this molecule a key building block for electronics. There are nowadays numerous examples of efficient dihydroindeno[1,2-b]fluorenylbased semiconductors that have found application in various fields, such as fluorescent 5–8] and phosphorescent organic light-emitting diodes (OLEDs), organic field-effect transistors, and organic solar cells. This wide range of applications clearly shows the high potential of this building block, but also its versatility. However, the dihydroindeno[1,2-b]fluorene is not the only member of the bridged-terphenyl family, since it possesses four other positional isomers with different phenyl linkages (para/meta/ortho) and different ring-bridging positions (anti vs. syn ; Scheme 1). There are hence five dihydroindenofluorene positional isomers, each possessing its own ring topology, which in turn has structural and electronic consequences. However, in contrast to the dihydroindeno[1,2-b]fluorene, other positional isomers remain very scarce in the literature owing to synthetic difficulties. For example, the dihydroindeno[2,1-a]fluorenyl (syn para-terphenyl) unit (Scheme 1) has only been investigated for organic electronics very recently, and thanks its particular syn geometry has emerged as a promising scaffold for a new generation of excimer-based OLEDs. Similarly, antiaromatic fully conjugated indenofluorene derivatives have recently attracted particular attention; Haley and co-workers have for example reported a new class of (2,1-c)indenofluorenes with high electron affinities. However, the anti and syn meta-terphenyl isomers, that is, dihydroindeno[1,2-a]fluorene and dihydroindeno[2,1-b]fluorene, although known for 60 years, are almost absent from the literature, and their intrinsic properties have never been studied. As the design of novel molecular fragments is of key importance for the future of organic electronics, we report herein the first examples of the use of dihydroindeno[1,2b]fluorene (1) and dihydroindeno[2,1-a]fluorene (2 ; Scheme 1. The five positional dihydroindenofluorene isomers.

84 citations

Journal ArticleDOI
TL;DR: In this paper, the third-order nonlinear optical properties of gold nanorods in water solution in a broad range of wavelengths including both the longitudinal and transverse surface plasmon resonance (SPR) bands were evaluated.
Abstract: We have evaluated the third-order nonlinear optical properties of gold nanorods in water solution in a broad range of wavelengths including both the longitudinal and transverse surface plasmon resonance (SPR) bands. On the basis of the analysis of Z-scan measurements performed with femtosecond laser pulses, we conclude that the optical nonlinearity in the longitudinal-SPR absorption range originates mainly from the saturation of the one-photon absorption, whereas a resonant two-photon absorption process is dominant in the transverse-SPR range of wavelengths. The discrepancies in the values of two-photon absorption coefficients reported by various researchers and the methods of reliable comparison of the results are discussed.

84 citations

Journal ArticleDOI
TL;DR: In this article, a fluorescent naphthalimide-tetrazine dyad (NITZ) was examined for electrofluorochromism, where the reversible electrochemistry of the tetrazine was accompanied by the fluorescence change through a quasi-complete energy transfer in an electrochemical cell prepared by the mixture of polymer electrolyte and naph-thalimides-Tetrazines dyad.
Abstract: A fluorescent naphthalimide-tetrazine dyad (NITZ) was examined for electrofluorochromism. The reversible electrochemistry of the tetrazine was accompanied by the fluorescence change through a quasi-complete energy transfer in an electrochemical cell prepared by the mixture of polymer electrolyte and naphthalimide-tetrazine dyad. Owing to the energy transfer within the dyad (naphthalimide and tetrazine), the fluorescence efficiency of NITZ was much enhanced and the effective fluorophore concentration in this system was much less than other tetrazine based electrofluorochromic device (EFD). Thus the yellow fluorescence of NITZ was switched on and off remarkably even with small quantity of NITZ (1 wt.%) in an EFD upon application of step potentials for different redox state. Furthermore, multi-color fluorescence switching was achieved by blending a naphthalimide to the electrofluorochromic layer, to show white-blue-dark state of fluorescence. Since the tetrazine and naphthalimide units have their emission quenched at different potentials, the emission color could be tuned by quenching emission at selected wavelengths, reversibly, under low working potentials.

84 citations

Book ChapterDOI
11 Jul 2005
TL;DR: A framework for comparing a cryptographic implementation and its idealization w.r.t. various security notions is defined and a soundness criterion is presented, which for many theories is not only sufficient but also necessary.
Abstract: In this paper we study the link between formal and cryptographic models for security protocols in the presence of a passive adversary. In contrast to other works, we do not consider a fixed set of primitives but aim at results for an arbitrary equational theory. We define a framework for comparing a cryptographic implementation and its idealization w.r.t. various security notions. In particular, we concentrate on the computational soundness of static equivalence, a standard tool in cryptographic pi calculi. We present a soundness criterion, which for many theories is not only sufficient but also necessary. Finally, we establish new soundness results for the exclusive OR and a theory of ciphers and lists.

84 citations

Proceedings ArticleDOI
14 Mar 2010
TL;DR: The first algorithm which computes the maximum end-to-end delay for a given flow, as well as the maximum backlog at a server, for any feed-forward network under blind multiplexing, with concave arrival curves and convex service curves is described.
Abstract: Network Calculus theory aims at evaluating worst-case performances in communication networks. It provides methods to analyze models where the traffic and the services are constrained by some minimum and/or maximum envelopes (service/arrival curves). While new applications come forward, a challenging and inescapable issue remains open: achieving tight analyzes of networks with aggregate multiplexing. The theory offers efficient methods to bound maximum end-to-end delays or local backlogs. However as shown recently, those bounds can be arbitrarily far from the exact worst-case values, even in seemingly simple feed-forward networks (two flows and two servers), under blind multiplexing (i.e. no information about the scheduling policies, except FIFO per flow). For now, only a network with three flows and three servers, as well as a tandem network called sink tree, have been analyzed tightly. We describe the first algorithm which computes the maximum end-to-end delay for a given flow, as well as the maximum backlog at a server, for any feed-forward network under blind multiplexing, with concave arrival curves and convex service curves. Its computational complexity may look expensive (possibly super-exponential), but we show that the problem is intrinsically difficult (NP-hard). Fortunately we show that in some cases, like tandem networks with cross-traffic interfering along intervals of servers, the complexity becomes polynomial. We also compare ourselves to the previous approaches and discuss the problems left open.

84 citations


Authors

Showing all 2722 results

NameH-indexPapersCitations
Shi Xue Dou122202874031
Olivier Hermine111102643779
John R. Reynolds10560750027
Shaul Mukamel95103040478
Tomás Torres8862528223
Ifor D. W. Samuel7460523151
Serge Abiteboul7327824576
Stéphane Roux6862719123
Zeger Debyser6740416531
Louis Nadjo6426412596
Praveen K. Thallapally6419012110
Andrew Travers6319313537
Shoji Takeuchi6369214704
Bineta Keita6327412053
Yves Mély6236813478
Network Information
Related Institutions (5)
École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

92% related

École Normale Supérieure
99.4K papers, 3M citations

91% related

Georgia Institute of Technology
119K papers, 4.6M citations

91% related

University of Paris-Sud
52.7K papers, 2.1M citations

90% related

University of Paris
174.1K papers, 5M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202222
202121
202029
201958
201879