scispace - formally typeset


École Polytechnique

EducationPalaiseau, France
About: École Polytechnique is a(n) education organization based out in Palaiseau, France. It is known for research contribution in the topic(s): Laser & Plasma. The organization has 18995 authors who have published 39265 publication(s) receiving 1225163 citation(s). The organization is also known as: Ecole Polytechnique & Polytechnique.
Topics: Laser, Plasma, Population, Electron, Femtosecond
More filters

Journal ArticleDOI
Abstract: Results are presented from searches for the standard model Higgs boson in proton-proton collisions at sqrt(s)=7 and 8 TeV in the CMS experiment at the LHC, using data samples corresponding to integrated luminosities of up to 5.1 inverse femtobarns at 7 TeV and 5.3 inverse femtobarns at 8 TeV. The search is performed in five decay modes: gamma gamma, ZZ, WW, tau tau, and b b-bar. An excess of events is observed above the expected background, a local significance of 5.0 standard deviations, at a mass near 125 GeV, signalling the production of a new particle. The expected significance for a standard model Higgs boson of that mass is 5.8 standard deviations. The excess is most significant in the two decay modes with the best mass resolution, gamma gamma and ZZ; a fit to these signals gives a mass of 125.3 +/- 0.4 (stat.) +/- 0.5 (syst.) GeV. The decay to two photons indicates that the new particle is a boson with spin different from one.

8,357 citations

Journal ArticleDOI
Abstract: The Compact Muon Solenoid (CMS) detector is described. The detector operates at the Large Hadron Collider (LHC) at CERN. It was conceived to study proton-proton (and lead-lead) collisions at a centre-of-mass energy of 14 TeV (5.5 TeV nucleon-nucleon) and at luminosities up to 10(34)cm(-2)s(-1) (10(27)cm(-2)s(-1)). At the core of the CMS detector sits a high-magnetic-field and large-bore superconducting solenoid surrounding an all-silicon pixel and strip tracker, a lead-tungstate scintillating-crystals electromagnetic calorimeter, and a brass-scintillator sampling hadron calorimeter. The iron yoke of the flux-return is instrumented with four stations of muon detectors covering most of the 4 pi solid angle. Forward sampling calorimeters extend the pseudo-rapidity coverage to high values (vertical bar eta vertical bar <= 5) assuring very good hermeticity. The overall dimensions of the CMS detector are a length of 21.6 m, a diameter of 14.6 m and a total weight of 12500 t.

4,663 citations

Journal ArticleDOI
Abstract: Recently, a new framework for solving the hierarchy problem has been proposed which does not rely on low energy supersymmetry or technicolor. The gravitational and gauge interactions unite at the electroweak scale, and the observed weakness of gravity at long distances is due the existence of large new spatial dimensions. In this letter, we show that this framework can be embedded in string theory. These models have a perturbative description in the context of type I string theory. The gravitational sector consists of closed strings propagating in the higher-dimensional bulk, while ordinary matter consists of open strings living on D3-branes. This scenario raises the exciting possibility that the LHC and NLC will experimentally study ordinary aspects of string physics such as the production of narrow Regge-excitations of all standard model particles, as well more exotic phenomena involving strong gravity such as the production of black holes. The new dimensions can be probed by events with large missing energy carried off by gravitons escaping into the bulk. We finally discuss some important issues of model building, such as proton stability, gauge coupling unification and supersymmetry breaking.

3,869 citations

Journal ArticleDOI
Antonin Chambolle1, Thomas Pock2Institutions (2)
TL;DR: A first-order primal-dual algorithm for non-smooth convex optimization problems with known saddle-point structure can achieve O(1/N2) convergence on problems, where the primal or the dual objective is uniformly convex, and it can show linear convergence, i.e. O(ωN) for some ω∈(0,1), on smooth problems.
Abstract: In this paper we study a first-order primal-dual algorithm for non-smooth convex optimization problems with known saddle-point structure. We prove convergence to a saddle-point with rate O(1/N) in finite dimensions for the complete class of problems. We further show accelerations of the proposed algorithm to yield improved rates on problems with some degree of smoothness. In particular we show that we can achieve O(1/N 2) convergence on problems, where the primal or the dual objective is uniformly convex, and we can show linear convergence, i.e. O(? N ) for some ??(0,1), on smooth problems. The wide applicability of the proposed algorithm is demonstrated on several imaging problems such as image denoising, image deconvolution, image inpainting, motion estimation and multi-label image segmentation.

3,844 citations

Journal ArticleDOI
W. B. Atwood1, A. A. Abdo2, A. A. Abdo3, Markus Ackermann4  +289 moreInstitutions (37)
Abstract: (Abridged) The Large Area Telescope (Fermi/LAT, hereafter LAT), the primary instrument on the Fermi Gamma-ray Space Telescope (Fermi) mission, is an imaging, wide field-of-view, high-energy gamma-ray telescope, covering the energy range from below 20 MeV to more than 300 GeV. This paper describes the LAT, its pre-flight expected performance, and summarizes the key science objectives that will be addressed. On-orbit performance will be presented in detail in a subsequent paper. The LAT is a pair-conversion telescope with a precision tracker and calorimeter, each consisting of a 4x4 array of 16 modules, a segmented anticoincidence detector that covers the tracker array, and a programmable trigger and data acquisition system. Each tracker module has a vertical stack of 18 x,y tracking planes, including two layers (x and y) of single-sided silicon strip detectors and high-Z converter material (tungsten) per tray. Every calorimeter module has 96 CsI(Tl) crystals, arranged in an 8 layer hodoscopic configuration with a total depth of 8.6 radiation lengths. The aspect ratio of the tracker (height/width) is 0.4 allowing a large field-of-view (2.4 sr). Data obtained with the LAT are intended to (i) permit rapid notification of high-energy gamma-ray bursts (GRBs) and transients and facilitate monitoring of variable sources, (ii) yield an extensive catalog of several thousand high-energy sources obtained from an all-sky survey, (iii) measure spectra from 20 MeV to more than 50 GeV for several hundred sources, (iv) localize point sources to 0.3 - 2 arc minutes, (v) map and obtain spectra of extended sources such as SNRs, molecular clouds, and nearby galaxies, (vi) measure the diffuse isotropic gamma-ray background up to TeV energies, and (vii) explore the discovery space for dark matter.

3,293 citations


Showing all 18995 results

Michael Grätzel2481423303599
Jing Wang1844046202769
David L. Kaplan1771944146082
Lorenzo Bianchini1521516106970
David D'Enterria1501592116210
Vivek Sharma1503030136228
Melody A. Swartz1481304103753
Edward G. Lakatta14685888637
Carlo Rovelli1461502103550
Marc Besancon1431799106869
Maksym Titov1391573128335
Jean-Paul Kneib13880589287
Yves Sirois137133495714
Maria Spiropulu135145596674
Shaik M. Zakeeruddin13345376010
Network Information
Related Institutions (5)
École Normale Supérieure

99.4K papers, 3M citations

95% related

École Polytechnique Fédérale de Lausanne

98.2K papers, 4.3M citations

94% related

Centre national de la recherche scientifique

382.4K papers, 13.6M citations

94% related

ETH Zurich

122.4K papers, 5.1M citations

94% related

Massachusetts Institute of Technology

268K papers, 18.2M citations

93% related

No. of papers from the Institution in previous years