scispace - formally typeset
Search or ask a question
Institution

École Polytechnique

EducationPalaiseau, France
About: École Polytechnique is a education organization based out in Palaiseau, France. It is known for research contribution in the topics: Laser & Plasma. The organization has 18995 authors who have published 39265 publications receiving 1225163 citations. The organization is also known as: Ecole Polytechnique & Polytechnique.
Topics: Laser, Plasma, Population, Electron, Femtosecond


Papers
More filters
Book ChapterDOI
01 Jan 2012
TL;DR: This chapter illustrates the potential of Embryomorphic Engineering in different spaces: 2D/3D physical swarms, which can find applications in collective robotics, synthetic biology or nanotechnology; and \(n\)D graph topologies, which have applications in distributed software and peer-to-peer techno-social networks.
Abstract: Embryomorphic Engineering, a particular instance of Morphogenetic Engineering, takes its inspiration directly from biological development to create new robotic, software or network architectures by decentralized self-assembly of elementary agents. At its core, it combines three key principles of multicellular embryogenesis: chemical gradient diffusion (providing positional information to the agents), gene regulatory networks (triggering their differentiation into types, thus patterning), and cell division or aggregation (creating structural constraints, thus reshaping). This chapter illustrates the potential of Embryomorphic Engineering in different spaces: 2D/3D physical swarms, which can find applications in collective robotics, synthetic biology or nanotechnology; and \(n\)D graph topologies, which can find applications in distributed software and peer-to-peer techno-social networks. In all cases, the specific genotype shared by all the agents makes the phenotype’s complex architecture and function modular, programmable and reproducible.

33 citations

Journal ArticleDOI
TL;DR: In this paper, the preparation of nanocomposites consisting of laser synthesized single-walled carbon nanotubes (C-SWNTs) reinforcing a polyurethane was described.

33 citations

Journal ArticleDOI
TL;DR: To overcome the many‐body dependency of the GB model, a “Native Environment” approximation is used, whose accuracy is shown to be good and allows the precalculation and storage of interactions between all sidechain pairs, a strategy borrowed from computational protein design.
Abstract: Titratable residues determine the acid/base behavior of proteins, strongly influencing their function; in addition, proton binding is a valuable reporter on electrostatic interactions. We describe a method for pK(a) calculations, using constant-pH Monte Carlo (MC) simulations to explore the space of sidechain conformations and protonation states, with an efficient and accurate generalized Born model (GB) for the solvent effects. To overcome the many-body dependency of the GB model, we use a "Native Environment" approximation, whose accuracy is shown to be good. It allows the precalculation and storage of interactions between all sidechain pairs, a strategy borrowed from computational protein design, which makes the MC simulations themselves very fast. The method is tested for 12 proteins and 167 titratable sidechains. It gives an rms error of 1.1 pH units, similar to the trivial "Null" model. The only adjustable parameter is the protein dielectric constant. The best accuracy is achieved for values between 4 and 8, a range that is physically plausible for a protein interior. For sidechains with large pKa shifts, ≥2, the rms error is 1.6, compared to 2.5 with the Null model and 1.5 with the empirical PROPKA method.

33 citations

Journal ArticleDOI
TL;DR: This paper explores equivalent, reduced size Reformulation-Linearization Technique (RLT)-based formulations for polynomial programming problems by exploiting a basis partitioning scheme for an embedded linear equality subsystem and derive significantly reduced RLT representations.
Abstract: This paper explores equivalent, reduced size Reformulation-Linearization Technique (RLT)-based formulations for polynomial programming problems. Utilizing a basis partitioning scheme for an embedded linear equality subsystem, we show that a strict subset of RLT defining equalities imply the remaining ones. Applying this result, we derive significantly reduced RLT representations and develop certain coherent associated branching rules that assure convergence to a global optimum, along with static as well as dynamic basis selection strategies to implement the proposed procedure. In addition, we enhance the RLT relaxations with v-semidefinite cuts, which are empirically shown to further improve the relative performance of the reduced RLT method over the usual RLT approach. We present computational results for randomly generated instances to test the different proposed reduction strategies and to demonstrate the improvement in overall computational effort when such reduced RLT mechanisms are employed.

33 citations

Journal ArticleDOI
C. Adloff, V. Andreev1, B. Andrieu2, T. Anthonis3  +324 moreInstitutions (28)
TL;DR: In this article, a measurement of jet cross-sections in deepinelastic ep scattering at HERA is presented based on data with an integrated luminosity of 21.1 pb(-1).

33 citations


Authors

Showing all 19056 results

NameH-indexPapersCitations
Michael Grätzel2481423303599
Jing Wang1844046202769
David L. Kaplan1771944146082
Lorenzo Bianchini1521516106970
David D'Enterria1501592116210
Vivek Sharma1503030136228
Melody A. Swartz1481304103753
Edward G. Lakatta14685888637
Carlo Rovelli1461502103550
Marc Besancon1431799106869
Maksym Titov1391573128335
Jean-Paul Kneib13880589287
Yves Sirois137133495714
Maria Spiropulu135145596674
Shaik M. Zakeeruddin13345376010
Network Information
Related Institutions (5)
École Normale Supérieure
99.4K papers, 3M citations

95% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

94% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

94% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202340
2022116
20211,470
20201,666
20191,483
20181,218