scispace - formally typeset
Search or ask a question

Showing papers by "École Polytechnique Fédérale de Lausanne published in 2006"


Journal ArticleDOI
TL;DR: UNLABELLED RAxML-VI-HPC (randomized axelerated maximum likelihood for high performance computing) is a sequential and parallel program for inference of large phylogenies with maximum likelihood (ML) that has been used to compute ML trees on two of the largest alignments to date.
Abstract: Summary: RAxML-VI-HPC (randomized axelerated maximum likelihood for high performance computing) is a sequential and parallel program for inference of large phylogenies with maximum likelihood (ML). Low-level technical optimizations, a modification of the search algorithm, and the use of the GTR+CAT approximation as replacement for GTR+Γ yield a program that is between 2.7 and 52 times faster than the previous version of RAxML. A large-scale performance comparison with GARLI, PHYML, IQPNNI and MrBayes on real data containing 1000 up to 6722 taxa shows that RAxML requires at least 5.6 times less main memory and yields better trees in similar times than the best competing program (GARLI) on datasets up to 2500 taxa. On datasets ≥4000 taxa it also runs 2--3 times faster than GARLI. RAxML has been parallelized with MPI to conduct parallel multiple bootstraps and inferences on distinct starting trees. The program has been used to compute ML trees on two of the largest alignments to date containing 25 057 (1463 bp) and 2182 (51 089 bp) taxa, respectively. Availability: icwww.epfl.ch/~stamatak Contact: Alexandros.Stamatakis@epfl.ch Supplementary information: Supplementary data are available at Bioinformatics online.

14,847 citations


Journal ArticleDOI
28 Sep 2006-Nature
TL;DR: A comprehensive set of experiments giving compelling evidence for BEC of polaritons of bosonic quasi-particles are detailed, which indicate the spontaneous onset of a macroscopic quantum phase.
Abstract: Phase transitions to quantum condensed phases—such as Bose–Einstein condensation (BEC), superfluidity, and superconductivity—have long fascinated scientists, as they bring pure quantum effects to a macroscopic scale. BEC has, for example, famously been demonstrated in dilute atom gas of rubidium atoms at temperatures below 200 nanokelvin. Much effort has been devoted to finding a solid-state system in which BEC can take place. Promising candidate systems are semiconductor microcavities, in which photons are confined and strongly coupled to electronic excitations, leading to the creation of exciton polaritons. These bosonic quasi-particles are 109 times lighter than rubidium atoms, thus theoretically permitting BEC to occur at standard cryogenic temperatures. Here we detail a comprehensive set of experiments giving compelling evidence for BEC of polaritons. Above a critical density, we observe massive occupation of the ground state developing from a polariton gas at thermal equilibrium at 19 K, an increase of temporal coherence, and the build-up of long-range spatial coherence and linear polarization, all of which indicate the spontaneous onset of a macroscopic quantum phase. Bose–Einstein condensation (BEC), a form of matter first postulated in 1924, has famously been demonstrated in dilute atomic gases at ultra-low temperatures. Much effort is now being devoted to exploring solid-state systems in which BEC can occur. In theory semiconductor microcavities, where photons are confined and coupled to electronic excitations leading to the creation of polaritons, could allow BEC at standard cryogenic temperatures. Kasprzak et al. now present experiments in which polaritons are excited in such a microcavity. Above a critical polariton density, spontaneous onset of a macroscopic quantum phase occurs, indicating a solid-state BEC. BEC should also be possible at higher temperatures if coupling of light with solid excitations is sufficiently strong. Demokritov et al. have achieved just that, BEC at room temperature in a gas of magnons, which are a type of magnetic excitation. This paper presents a comprehensive set of experiments in which polaritons are excited in a semiconductor microcavity. Above a critical density of polaritons, massive occupation of the ground state at 19 K is observed and various pieces of experimental evidence point to a spontaneous onset of a macroscopic quantum phase.

2,527 citations


Journal ArticleDOI
TL;DR: Some of the 'design principles' for recreating the interwoven set of biochemical and mechanical cues in the cellular microenvironment are discussed, and the methods for implementing them are discussed.
Abstract: The emergence of tissue engineering raises new possibilities for the study of complex physiological and pathophysiological processes in vitro. Many tools are now available to create 3D tissue models in vitro, but the blueprints for what to make have been slower to arrive. We discuss here some of the 'design principles' for recreating the interwoven set of biochemical and mechanical cues in the cellular microenvironment, and the methods for implementing them. We emphasize applications that involve epithelial tissues for which 3D models could explain mechanisms of disease or aid in drug development.

2,182 citations


Journal ArticleDOI
TL;DR: Tissue scaffolds that have been engineered at the micro- and nanoscale level now enable better dissection of the mechanosensing, transduction and response mechanisms of eukaryotic cells.
Abstract: The shapes of eukaryotic cells and ultimately the organisms that they form are defined by cycles of mechanosensing, mechanotransduction and mechanoresponse Local sensing of force or geometry is transduced into biochemical signals that result in cell responses even for complex mechanical parameters such as substrate rigidity and cell-level form These responses regulate cell growth, differentiation, shape changes and cell death Recent tissue scaffolds that have been engineered at the micro- and nanoscale level now enable better dissection of the mechanosensing, transduction and response mechanisms

2,147 citations


Journal ArticleDOI
TL;DR: An overview of the state of the art in ferroelectric thin films is presented in this paper, where the authors review applications: micro-systems' applications, applications in high frequency electronics, and memories based on Ferroelectric materials.
Abstract: An overview of the state of art in ferroelectric thin films is presented. First, we review applications: microsystems' applications, applications in high frequency electronics, and memories based on ferroelectric materials. The second section deals with materials, structure (domains, in particular), and size effects. Properties of thin films that are important for applications are then addressed: polarization reversal and properties related to the reliability of ferroelectric memories, piezoelectric nonlinearity of ferroelectric films which is relevant to microsystems' applications, and permittivity and loss in ferroelectric films-important in all applications and essential in high frequency devices. In the context of properties we also discuss nanoscale probing of ferroelectrics. Finally, we comment on two important emerging topics: multiferroic materials and ferroelectric one-dimensional nanostructures. (c) 2006 American Institute of Physics.

1,632 citations


Journal ArticleDOI
TL;DR: The IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry (IUPAC-GKDE) as mentioned in this paper has published a series of data sheets for organic halogen species.
Abstract: This article, the fourth in the series, presents kinetic and photochemical data sheets evaluated by the IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. It covers the gas phase and photochemical reactions of organic halogen species, which were last published in 1997, and were updated on the IUPAC website in 2006/07. The article consists of a summary sheet, containing the recommended kinetic parameters for the evaluated reactions, and four appendices containing the data sheets, which provide information upon which the recommendations are made.

1,623 citations


Journal ArticleDOI
TL;DR: In this article, thin films of silicon-doped Fe2O3 were deposited by APCVD (atmospheric pressure chemical vapor deposition) from Fe(CO)5 and TEOS (tetraethoxysilane) on SnO2-coated glass at 415 °C.
Abstract: Thin films of silicon-doped Fe2O3 were deposited by APCVD (atmospheric pressure chemical vapor deposition) from Fe(CO)5 and TEOS (tetraethoxysilane) on SnO2-coated glass at 415 °C. HRSEM reveals a highly developed dendritic nanostructure of 500 nm thickness having a feature size of only 10−20 nm at the surface. Real surface area determination by dye adsorption yields a roughness factor of 21. XRD shows the films to be pure hematite with strong preferential orientation of the [110] axis vertical to the substrate, induced by silicon doping. Under illumination in 1 M NaOH, water is oxidized at the Fe2O3 electrode with higher efficiency (IPCE = 42% at 370 nm and 2.2 mA/cm2 in AM 1.5 G sunlight of 1000 W/m2 at 1.23 VRHE) than at the best reported single crystalline Fe2O3 electrodes. This unprecedented efficiency is in part attributed to the dendritic nanostructure which minimizes the distance photogenerated holes have to diffuse to reach the Fe2O3/electrolyte interface while still allowing efficient light abso...

1,442 citations


Journal ArticleDOI
TL;DR: In this paper, a stellar library for stellar population synthesis modelling is presented, which consists of 985 stars spanning a large range in atmospheric parameters and is obtained at the 2.5m Isaac Newton Telescope and cover the range λλ 3525-7500 A at 2.3 A spectral resolution.
Abstract: A new stellar library developed for stellar population synthesis modelling is presented. The library consists of 985 stars spanning a large range in atmospheric parameters. The spectra were obtained at the 2.5-m Isaac Newton Telescope and cover the range λλ 3525–7500 A at 2.3 A (full width at half-maximum) spectral resolution. The spectral resolution, spectral-type coverage, flux-calibration accuracy and number of stars represent a substantial improvement over previous libraries used in population-synthesis models.

1,396 citations


Journal ArticleDOI
TL;DR: The James Webb Space Telescope (JWST) as discussed by the authors is a large (6.6 m), cold (<50 K), infrared-optimized space observatory that will be launched early in the next decade into orbit around the second Earth-Sun Lagrange point.
Abstract: The James Webb Space Telescope (JWST) is a large (6.6 m), cold (<50 K), infrared (IR)-optimized space observatory that will be launched early in the next decade into orbit around the second Earth–Sun Lagrange point. The observatory will have four instruments: a near-IR camera, a near-IR multiobject spectrograph, and a tunable filter imager will cover the wavelength range, 0.6 < ; < 5.0 μ m, while the mid-IR instrument will do both imaging and spectroscopy from 5.0 < ; < 29 μ m. The JWST science goals are divided into four themes. The key objective of The End of the Dark Ages: First Light and Reionization theme is to identify the first luminous sources to form and to determine the ionization history of the early universe. The key objective of The Assembly of Galaxies theme is to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present day. The key objective of The Birth of Stars and Protoplanetary Systems theme is to unravel the birth and early evolution of stars, from infall on to dust-enshrouded protostars to the genesis of planetary systems. The key objective of the Planetary Systems and the Origins of Life theme is to determine the physical and chemical properties of planetary systems including our own, and investigate the potential for the origins of life in those systems. Within these themes and objectives, we have derived representative astronomical observations. To enable these observations, JWST consists of a telescope, an instrument package, a spacecraft, and a sunshield. The telescope consists of 18 beryllium segments, some of which are deployed. The segments will be brought into optical alignment on-orbit through a process of periodic wavefront sensing and control. The instrument package contains the four science instruments and a fine guidance sensor. The spacecraft provides pointing, orbit maintenance, and communications. The sunshield provides passive thermal control. The JWST operations plan is based on that used for previous space observatories, and the majority of JWST observing time will be allocated to the international astronomical community through annual peer-reviewed proposal opportunities.

1,372 citations


Journal ArticleDOI
TL;DR: It is argued that the time is right to begin assimilating the wealth of data that has been accumulated over the past century and start building biologically accurate models of the brain from first principles to aid the understanding of brain function and dysfunction.
Abstract: Markram describes the impressive aims of the Blue Brain Project, in which the enormous computing power of IBM's Blue Gene supercomputer is being harnessed to build biologically accurate models of the neocortical column and, ultimately, the whole brain.

1,243 citations


Journal ArticleDOI
TL;DR: In this article, an ensemble of 26 state-of-the-art atmospheric chemistry models have been compared and synthesized as part of a wider study into both the air quality and climate roles of ozone.
Abstract: Global tropospheric ozone distributions, budgets, and radiative forcings from an ensemble of 26 state-of-the-art atmospheric chemistry models have been intercompared and synthesized as part of a wider study into both the air quality and climate roles of ozone. Results from three 2030 emissions scenarios, broadly representing optimistic, likely, and pessimistic options, are compared to a base year 2000 simulation. This base case realistically represents the current global distribution of tropospheric ozone. A further set of simulations considers the influence of climate change over the same time period by forcing the central emissions scenario with a surface warming of around 0.7K. The use of a large multimodel ensemble allows us to identify key areas of uncertainty and improves the robustness of the results. Ensemble mean changes in tropospheric ozone burden between 2000 and 2030 for the 3 scenarios range from a 5% decrease, through a 6% increase, to a 15% increase. The intermodel uncertainty (±1 standard deviation) associated with these values is about ±25%. Model outliers have no significant influence on the ensemble mean results. Combining ozone and methane changes, the three scenarios produce radiative forcings of -50, 180, and 300 mW m-2, compared to a CO 2 forcing over the same time period of 800-1100 mW m-2. These values indicate the importance of air pollution emissions in short- to medium-term climate forcing and the potential for stringent/lax control measures to improve/worsen future climate forcing. The model sensitivity of ozone to imposed climate change varies between models but modulates zonal mean mixing ratios by ±5 ppbv via a variety of feedback mechanisms, in particular those involving water vapor and stratosphere-troposphere exchange. This level of climate change also reduces the methane lifetime by around 4%. The ensemble mean year 2000 tropospheric ozone budget indicates chemical production, chemical destruction, dry deposition and stratospheric input fluxes of 5100, 4650, 1000 and 550 Tg(O 3 ) yr-1, respectively. These values are significantly different to the mean budget documented by the Intergovernmental Panel on Climate Change (IPCC) Third Assessment Report (TAR). The mean ozone burden (340 Tg(O 3 )) is 10% larger than the IPCC TAR estimate, while the mean ozone lifetime (22 days) is 10% shorter. Results from individual models show a correlation between ozone burden and lifetime, and each model's ozone burden and lifetime respond in similar ways across the emissions scenarios. The response to climate change is much less consistent. Models show more variability in the tropics compared to midlatitudes. Some of the most uncertain areas of the models include treatments of deep tropical convection, including lightning NO x production; isoprene emissions from vegetation and isoprene's degradation chemistry; stratosphere-troposphere exchange; biomass burning; and water vapor concentrations. Copyright 2006 by the American Geophysical Union.

Journal ArticleDOI
TL;DR: A genetically encoded, highly specific fluorescent probe for detecting hydrogen peroxide (H2O2) inside living cells, named HyPer, consists of circularly permuted yellow fluorescent protein (cpYFP) inserted into the regulatory domain of the prokaryotic H 2O2-sensing protein, OxyR.
Abstract: We developed a genetically encoded, highly specific fluorescent probe for detecting hydrogen peroxide (H(2)O(2)) inside living cells. This probe, named HyPer, consists of circularly permuted yellow fluorescent protein (cpYFP) inserted into the regulatory domain of the prokaryotic H(2)O(2)-sensing protein, OxyR. Using HyPer we monitored H(2)O(2) production at the single-cell level in the cytoplasm and mitochondria of HeLa cells treated with Apo2L/TRAIL. We found that an increase in H(2)O(2) occurs in the cytoplasm in parallel with a drop in the mitochondrial transmembrane potential (DeltaPsi) and a change in cell shape. We also observed local bursts in mitochondrial H(2)O(2) production during DeltaPsi oscillations in apoptotic HeLa cells. Moreover, sensitivity of the probe was sufficient to observe H(2)O(2) increase upon physiological stimulation. Using HyPer we detected temporal increase in H(2)O(2) in the cytoplasm of PC-12 cells stimulated with nerve growth factor.

Journal ArticleDOI
TL;DR: This paper used 23 atmospheric chemistry transport models to calculate current and future (2030) deposition of reactive nitrogen (NOy, NHx) and sulfate (SOx) to land and ocean surfaces.
Abstract: We use 23 atmospheric chemistry transport models to calculate current and future (2030) deposition of reactive nitrogen (NOy, NHx) and sulfate (SOx) to land and ocean surfaces. The models are driven by three emission scenarios: (1) current air quality legislation (CLE); (2) an optimistic case of the maximum emissions reductions currently technologically feasible (MFR); and (3) the contrasting pessimistic IPCC SRES A2 scenario. An extensive evaluation of the present-day deposition using nearly all information on wet deposition available worldwide shows a good agreement with observations in Europe and North America, where 60–70% of the model-calculated wet deposition rates agree to within ±50% with quality-controlled measurements. Models systematically overestimate NHx deposition in South Asia, and underestimate NOy deposition in East Asia. We show that there are substantial differences among models for the removal mechanisms of NOy, NHx, and SOx, leading to ±1 σ variance in total deposition fluxes of about 30% in the anthropogenic emissions regions, and up to a factor of 2 outside. In all cases the mean model constructed from the ensemble calculations is among the best when comparing to measurements. Currently, 36–51% of all NOy, NHx, and SOx is deposited over the ocean, and 50–80% of the fraction of deposition on land falls on natural (nonagricultural) vegetation. Currently, 11% of the world's natural vegetation receives nitrogen deposition in excess of the “critical load” threshold of 1000 mg(N) m−2 yr−1. The regions most affected are the United States (20% of vegetation), western Europe (30%), eastern Europe (80%), South Asia (60%), East Asia (40%), southeast Asia (30%), and Japan (50%). Future deposition fluxes are mainly driven by changes in emissions, and less importantly by changes in atmospheric chemistry and climate. The global fraction of vegetation exposed to nitrogen loads in excess of 1000 mg(N) m−2 yr−1 increases globally to 17% for CLE and 25% for A2. In MFR, the reductions in NOy are offset by further increases for NHx deposition. The regions most affected by exceedingly high nitrogen loads for CLE and A2 are Europe and Asia, but also parts of Africa.

Journal ArticleDOI
TL;DR: Impedance spectroscopy was applied to investigate the characteristics of dye-sensitized nanostructured TiO2 solar cells with high efficiencies of light to electricity conversion of 11.1% and 10.2%, allowing a separate analysis of the contribution of different resistive processes to the overall conversion efficiency.
Abstract: Impedance spectroscopy was applied to investigate the characteristics of dye-sensitized nanostructured TiO 2 solar cells (DSC) with high efficiencies of light to electricity conversion of 11.1% and 10.2%. The different parameters, that is, chemical capacitance, steady-state transport resistance, transient diffusion coefficient, and charge-transfer (recombination) resistance, have been interpreted in a unified and consistent framework, in which an exponential distribution of the localized states in the TiO 2 band gap plays a central role. The temperature variation of the chemical diffusion coefficient dependence on the Fermi-level position has been observed consistently with the standard multiple trapping model of electron transport in disordered semiconductors. A Tafel dependence of the recombination resistance dependence on bias potential has been rationalized in terms of the charge transfer from a distribution of surface states using the Marcus model of electron transfer. The current-potential curve of the solar cells has been independently constructed from the impedance parameters, allowing a separate analysis of the contribution of different resistive processes to the overall conversion efficiency.

Journal ArticleDOI
TL;DR: This work clearly indicated that carbon-based nanomaterials are toxic while the hazardous effect is size-dependent, and cytotoxicity is enhanced when the surface of the particles is functionalized after an acid treatment.
Abstract: The cellular toxicity of carbon-based nanomaterials was studied as a function of their aspect ratio and surface chemistry. These structures were multiwalled carbon nanotubes, carbon nanofibers, and carbon nanoparticles. Their toxicity was tested in vitro on lung tumor cells. Our work clearly indicated that these materials are toxic while the hazardous effect is size-dependent. Moreover, cytotoxicity is enhanced when the surface of the particles is functionalized after an acid treatment.

Journal ArticleDOI
TL;DR: The LPI-ARTICLE-2006-008doi:10.1002/adma.200502540View record in Web of Science Record created on 2006-05-03, modified on 2016-08-08 as discussed by the authors.
Abstract: Reference LPI-ARTICLE-2006-008doi:10.1002/adma.200502540View record in Web of Science Record created on 2006-05-03, modified on 2016-08-08

Journal ArticleDOI
TL;DR: The recent upsurge of interest in contrast agents for magnetic resonance imaging, of luminescent chemosensors for medical diagnostic, and lately, for optical imaging of cells has generated an impressive momentum for the coordination and supramolecular chemistry of trivalent lanthanide ions.
Abstract: The recent upsurge of interest in contrast agents for magnetic resonance imaging, of luminescent chemosensors for medical diagnostic, and lately, for optical imaging of cells has generated an impressive momentum for the coordination and supramolecular chemistry of trivalent lanthanide ions. We shortly review the synthetic methods allowing the introduction of these spherical ions with fascinating optical and magnetic properties into elaborate mono- and polymetallic edifices. We then illustrate these methods by selected examples describing the use of (i) a coronand to produce luminescent liquid crystals, (ii) derivatized calixarenes for 4f−5f element separation, (iii) podates for the production of nanoparticles with high relaxivity and for sensitizing the near-infrared (NIR) emission, and (iv) self-assembly processes for producing functional bimetallic edifices.

Journal ArticleDOI
TL;DR: The focus of this review is on the surface engineering aspects of biologically motivated micropatterning of two-dimensional (flat) surfaces with the aim to provide an introductory overview and critical assessment of the many techniques described in the literature.

Journal ArticleDOI
10 Jan 2006
TL;DR: This paper explains what network coding does and how it does it and discusses the implications of theoretical results on network coding for realistic settings and shows how network coding can be used in practice.
Abstract: Network coding is a new research area that may have interesting applications in practical networking systems. With network coding, intermediate nodes may send out packets that are linear combinations of previously received information. There are two main benefits of this approach: potential throughput improvements and a high degree of robustness. Robustness translates into loss resilience and facilitates the design of simple distributed algorithms that perform well, even if decisions are based only on partial information. This paper is an instant primer on network coding: we explain what network coding does and how it does it. We also discuss the implications of theoretical results on network coding for realistic settings and show how network coding can be used in practice

Journal ArticleDOI
TL;DR: In this paper, the main problems and the available solutions for the generation of 3D models from terrestrial images are addressed, and the full pipeline is presented for 3D modelling from terrestrial image data, considering the different approaches and analyzing all the steps involved.
Abstract: In this paper the main problems and the available solutions are addressed for the generation of 3D models from terrestrial images. Close range photogrammetry has dealt for many years with manual or automatic image measurements for precise 3D modelling. Nowadays 3D scanners are also becoming a standard source for input data in many application areas, but image-based modelling still remains the most complete, economical, portable, flexible and widely used approach. In this paper the full pipeline is presented for 3D modelling from terrestrial image data, considering the different approaches and analysing all the steps involved.

Journal ArticleDOI
TL;DR: In this article, a comprehensive source for emission input to global modeling, when simulating the aerosol impact on climate with state-of-the-art aerosol component modules is provided.
Abstract: Inventories for global aerosol and aerosol precursor emissions have been collected (based on published inventories and published simulations), assessed and prepared for the year 2000 (present-day conditions) and for the year 1750 (pre-industrial conditions). These global datasets establish a comprehensive source for emission input to global modeling, when simulating the aerosol impact on climate with state-of-the-art aerosol component modules. As these modules stratify aerosol into dust, sea-salt, sulfate, organic matter and soot, for all these aerosol types global fields on emission strength and recommendations for injection altitude and particulate size are provided. Temporal resolution varies between daily (dust and sea-salt), monthly (wild-land fires) and annual (all other emissions). These datasets benchmark aerosol emissions according to the knowledge in the year 2004. They are intended to serve as systematic constraints in sensitivity studies of the AeroCom initiative, which seeks to quantify (actual) uncertainties in aerosol global modeling.

Journal ArticleDOI
TL;DR: Carbon black was employed as the catalyst for triiodide reduction on fluorine-doped tin oxide glass substrates (FTO-glass) used as counter electrodes in platinum-free dye-sensitized solar cells.
Abstract: Carbon black was employed as the catalyst for triiodide reduction on fluorine-doped tin oxide glass substrates (FTO-glass) used as counter electrodes in platinum-free dye-sensitized solar cells The fill factors were strongly dependent on the thickness of the carbon layer, and the light energy conversion efficiency also increased up to a thickness of 10 μm The charge-transfer resistance (R ct ) of the carbon counter electrode decreased with the thickness of the carbon layer The R ct for the thicker carbon layer is less than three times that for the platinized FTO-glass The highest cell efficiency was 91% under 100 mW cm -2 light intensity (1 sun AM 15 light, J sc = 168 mA cm -2 , V oc = 7898 mV, fill factor = 0685)

Journal ArticleDOI
TL;DR: The results show that the cyanoacrylic acid groups are essentially coplanar with respect to the thiophene units, reflecting the strong conjugation across theThiophene-cyanoac acrylic groups.
Abstract: Novel organic sensitizers comprising donor, electron-conducting, and anchoring groups were engineered at molecular level and synthesized. The functionalized unsymmetrical organic sensitizers 3-{5-[N,N-bis(9,9-dimethylfluorene-2-yl)phenyl]-thiophene-2-yl}-2-cyano-acrylic acid (JK-1) and 3-{5'-[N,N-bis(9,9-dimethylfluorene-2-yl)phenyl]-2,2'-bisthiophene-5-yl}-2-cyano-acrylic acid (JK-2), upon anchoring onto TiO2 film, exhibit unprecedented incident photon to current conversion efficiency of 91%. The photovoltaic data using an electrolyte having composition of 0.6 M M-methyl-N-butyl imidiazolium iodide, 0.04 M iodine, 0.025 M LiI, 0.05 M guanidinium thiocyanate, and 0.28 M tert-butylpyridine in a 15/85 (v/v) mixture of valeronitrile and acetonitrile revealed a short circuit photocurrent density of 14.0 +/- 0.2 mA/cm2, an open circuit voltage of 753 +/- 10 mV, and a fill factor of 0.76 +/- 0.02, corresponding to an overall conversion efficiency of 8.01% under standard AM 1.5 sunlight. DFT/TDDFT calculations have been performed on the two organic sensitizers to gain insight into their structural, electronic, and optical properties. Our results show that the cyanoacrylic acid groups are essentially coplanar with respect to the thiophene units, reflecting the strong conjugation across the thiophene-cyanoacrylic groups. Molecular orbitals analysis confirmed the experimental assignment of redox potentials, while TDDFT calculations allowed assignment of the visible absorption bands.

Journal ArticleDOI
TL;DR: The morphology of the alpha-Fe2O3 was strongly influenced by the silicon doping, decreasing the feature size of the mesoscopic film, and the best performing photoanode would yield a solar-to-chemical conversion efficiency of 2.1% in a tandem device using two dye-sensitized solar cells in series.
Abstract: Thin, silicon-doped nanocrystalline α-Fe2O3 films have been deposited on F-doped SnO2 substrates by ultrasonic spray pyrolysis and chemical vapor deposition at atmospheric pressure. The photocatalytic activity of these films with regard to photoelectrochemical water oxidation was measured at pH 13.6 under simulated AM 1.5 global sunlight. The photoanodes prepared by USP and APCVD gave 1.17 and 1.45 mA/cm2, respectively, at 1.23 V vs RHE. The morphology of the α-Fe2O3 was strongly influenced by the silicon doping, decreasing the feature size of the mesoscopic film. The silicon-doped α-Fe2O3 nano-leaflets show a preferred orientation with the (001) basal plane normal to the substrate. The best performing photoanode would yield a solar-to-chemical conversion efficiency of 2.1% in a tandem device using two dye-sensitized solar cells in series.

Journal ArticleDOI
TL;DR: A new method based on B-spline snakes (active contours) for measuring high-accuracy contact angles with good accuracy and applicability to a variety of images thanks to the high-quality image-interpolation model and an advanced image-energy term.

Journal ArticleDOI
TL;DR: It is concluded that mRNA changes are not attributable to cell loss alone, and data from bona fide HD brains comprise an important reference for hypotheses related to HD and other neurodegenerative diseases.
Abstract: Huntington's disease (HD) pathology is well understood at a histological level but a comprehensive molecular analysis of the effect of the disease in the human brain has not previously been available. To elucidate the molecular phenotype of HD on a genome-wide scale, we compared mRNA profiles from 44 human HD brains with those from 36 unaffected controls using microarray analysis. Four brain regions were analyzed: caudate nucleus, cerebellum, prefrontal association cortex [Brodmann's area 9 (BA9)] and motor cortex [Brodmann's area 4 (BA4)]. The greatest number and magnitude of differentially expressed mRNAs were detected in the caudate nucleus, followed by motor cortex, then cerebellum. Thus, the molecular phenotype of HD generally parallels established neuropathology. Surprisingly, no mRNA changes were detected in prefrontal association cortex, thereby revealing subtleties of pathology not previously disclosed by histological methods. To establish that the observed changes were not simply the result of cell loss, we examined mRNA levels in laser-capture microdissected neurons from Grade 1 HD caudate compared to control. These analyses confirmed changes in expression seen in tissue homogenates; we thus conclude that mRNA changes are not attributable to cell loss alone. These data from bona fide HD brains comprise an important reference for hypotheses related to HD and other neurodegenerative diseases.

Journal ArticleDOI
TL;DR: What the future holds for metal-based drugs, in particular anti-metastasis drugs,In these enlightened times of the post genomic era is discussed.
Abstract: The discovery of new metal-based antitumour drugs, whether cisplatin derivatives or those based on other metals, has been largely based on cell viability assays (IC50 values) and compounds that bind to DNA. This approach has been applied for more than 30 years during which time very few new drugs have entered clinical use. In this article we discuss what the future holds for metal-based drugs, in particular anti-metastasis drugs, in these enlightened times of the post genomic era.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the correlation between various galaxy properties and halo mass and found that the properties of satellite galaxies are strongly correlated with those of their central galaxy, and that the early-type fraction of satellites is significantly higher in a halo of the same mass but with a late-type central galaxy.
Abstract: Using a large galaxy group catalogue constructed from the Sloan Digital Sky Survey Data Release 2, we investigate the correlation between various galaxy properties and halo mass. We split the population of galaxies in early-types, late-types and intermediate-types, based on their colour and specific star formation rate. At fixed luminosity, the late- (early-)type fraction of galaxies increases (decreases) with decreasing halo mass. Most importantly, this mass dependence is smooth and persists over the entire mass range probed, without any break or feature at any mass-scale. We argue that the previous claim of a characteristic feature on galaxy group scales is an artefact of the environment estimators used. At fixed halo mass, the luminosity dependence of the type fractions is surprisingly weak, especially over the range 0.25? L/L*? 2.5: galaxy type depends more strongly on halo mass than on luminosity. In agreement with previous studies, the late- (early-)type fraction increases (decreases) with increasing halocentric radius. However, we find that this radial dependence is present in haloes of all masses probed (down to 10 12 h -1 M ⊙ ), while previous studies did not find any radial dependence in haloes with M? 10 13.5 h -1 M ⊙ . We argue that this discrepancy owes to the fact that we have excluded central galaxies from our analysis. We also find that the properties of satellite galaxies are strongly correlated with those of their central galaxy. In particular, the early-type fraction of satellites is significantly higher in a halo with an early-type central galaxy than in a halo of the same mass but with a late-type central galaxy. This phenomenon, which we call 'galactic conformity', is present in haloes of all masses and for satellites of all luminosities. Finally, the fraction of intermediate-type galaxies is always ∼20 per cent, independent of luminosity, independent of halo mass, independent of halocentric radius, and independent of whether the galaxy is a central galaxy or a satellite galaxy. We discuss the implicat ns of all these findings for galaxy formation and evolution.

Journal ArticleDOI
TL;DR: It is proposed that the different molecular composition and higher phosphorylation of FAs on supermature islets, compared with FAs with classical islet status, accounts for higher stress resistance.
Abstract: Expression of α-smooth muscle actin (α-SMA) renders fibroblasts highly contractile and hallmarks myofibroblast differentiation. We identify α-SMA as a mechanosensitive protein that is recruited to stress fibers under high tension. Generation of this threshold tension requires the anchoring of stress fibers at sites of 8–30-μm-long “supermature” focal adhesions (suFAs), which exert a stress approximately fourfold higher (∼12 nN/μm2) on micropatterned deformable substrates than 2–6-μm-long classical FAs. Inhibition of suFA formation by growing myofibroblasts on substrates with a compliance of ≤11 kPa and on rigid micropatterns of 6-μm-long classical FA islets confines α-SMA to the cytosol. Reincorporation of α-SMA into stress fibers is established by stretching 6-μm-long classical FAs to 8.1-μm-long suFA islets on extendable membranes; the same stretch producing 5.4-μm-long classical FAs from initially 4-μm-long islets is without effect. We propose that the different molecular composition and higher phosphorylation of FAs on supermature islets, compared with FAs on classical islets, accounts for higher stress resistance.

Journal ArticleDOI
19 Oct 2006-Nature
TL;DR: Drug candidates that inhibit aggregation have the potential to slow the progression of Alzheimer's disease, Parkinson's disease and related disorders and could, if administered presymptomatically, drastically reduce the incidence of these diseases.
Abstract: The correlation between neurodegenerative disease and protein aggregation in the brain has long been recognized, but a causal relationship has not been unequivocally established, in part because a discrete pathogenic aggregate has not been identified. The complexity of these diseases and the dynamic nature of protein aggregation mean that, despite progress towards understanding aggregation, its relationship to disease is difficult to determine in the laboratory. Nevertheless, drug candidates that inhibit aggregation are now being tested in the clinic. These have the potential to slow the progression of Alzheimer's disease, Parkinson's disease and related disorders and could, if administered presymptomatically, drastically reduce the incidence of these diseases. The clinical trials could also settle the century-old debate about causality.