scispace - formally typeset
Search or ask a question
Institution

École Polytechnique Fédérale de Lausanne

FacilityLausanne, Switzerland
About: École Polytechnique Fédérale de Lausanne is a facility organization based out in Lausanne, Switzerland. It is known for research contribution in the topics: Population & Catalysis. The organization has 44041 authors who have published 98296 publications receiving 4372092 citations. The organization is also known as: EPFL & ETHL.


Papers
More filters
Journal ArticleDOI
TL;DR: An analysis of 134 industrial biotransformations reveals that hydrolases and redox biocatalysts are the most prominent categories and the implications of this for future research and development onBiocatalysis are discussed.

692 citations

Journal ArticleDOI
TL;DR: The experimental evidence for the proposed mode of action of this coordination compound is discussed, including transport into the cell via the transferrin cycle and activation by reduction.
Abstract: The promising drug candidate indazolium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019) is the second Ru-based anticancer agent to enter clinical trials. In this review, which is an update of a paper from 2006 (Hartinger et al., J. Inorg. Biochem. 2006, 100, 891-904), the experimental evidence for the proposed mode of action of this coordination compound is discussed, including transport into the cell via the transferrin cycle and activation by reduction. The results of the early clinical development of KP1019 are summarized in which five out of six evaluated patients experienced disease stabilization with no severe side effects.

691 citations

Journal ArticleDOI
TL;DR: In this article, the authors focus on the analysis of energy savings that can be achieved in a building heating system by applying model predictive control (MPC) and using weather predictions.

689 citations

Journal ArticleDOI
13 Dec 2012-Nature
TL;DR: A new approach for the automated design of ligands against profiles of multiple drug targets, demonstrated by the evolution of an approved acetylcholinesterase inhibitor drug into brain-penetrable ligands with either specific polypharmacology or exquisite selectivity profiles for G-protein-coupled receptors is described.
Abstract: The clinical efficacy and safety of a drug is determined by its activity profile across many proteins in the proteome. However, designing drugs with a specific multi-target profile is both complex and difficult. Therefore methods to design drugs rationally a priori against profiles of several proteins would have immense value in drug discovery. Here we describe a new approach for the automated design of ligands against profiles of multiple drug targets. The method is demonstrated by the evolution of an approved acetylcholinesterase inhibitor drug into brain-penetrable ligands with either specific polypharmacology or exquisite selectivity profiles for G-protein-coupled receptors. Overall, 800 ligand-target predictions of prospectively designed ligands were tested experimentally, of which 75% were confirmed to be correct. We also demonstrate target engagement in vivo. The approach can be a useful source of drug leads when multi-target profiles are required to achieve either selectivity over other drug targets or a desired polypharmacology.

688 citations


Authors

Showing all 44420 results

NameH-indexPapersCitations
Michael Grätzel2481423303599
Ruedi Aebersold182879141881
Eliezer Masliah170982127818
Richard H. Friend1691182140032
G. A. Cowan1592353172594
Ian A. Wilson15897198221
Johan Auwerx15865395779
Menachem Elimelech15754795285
A. Artamonov1501858119791
Melody A. Swartz1481304103753
Henry J. Snaith146511123155
Kurt Wüthrich143739103253
Richard S. J. Frackowiak142309100726
Jean-Paul Kneib13880589287
Kevin J. Tracey13856182791
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

98% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

96% related

Georgia Institute of Technology
119K papers, 4.6M citations

96% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

96% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023234
2022704
20215,247
20205,644
20195,432
20185,094