scispace - formally typeset
Search or ask a question
Institution

École Polytechnique Fédérale de Lausanne

FacilityLausanne, Switzerland
About: École Polytechnique Fédérale de Lausanne is a facility organization based out in Lausanne, Switzerland. It is known for research contribution in the topics: Population & Catalysis. The organization has 44041 authors who have published 98296 publications receiving 4372092 citations. The organization is also known as: EPFL & ETHL.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors discussed the lower Higgs boson mass bounds which come from the absolute stability of the Standard Model (SM) vacuum and from the Higgs inflation, as well as the prediction of the higgs mass coming from the asymptotic safety of the SM.
Abstract: We discuss the lower Higgs boson mass bounds which come from the absolute stability of the Standard Model (SM) vacuum and from the Higgs inflation, as well as the prediction of the Higgs boson mass coming from the asymptotic safety of the SM. We account for the three-loop renormalization group evolution of the couplings of the SM and for a part of the two-loop corrections that involve the QCD coupling α s to the initial conditions for their running. This is one step beyond the current state-of-the-art procedure (“one-loop matching-two-loop running”). This results in a reduction of the theoretical uncertainties in the Higgs boson mass bounds and predictions, associated with the SM physics, to 1–2 GeV. We find that with the account of existing experimental uncertainties in the mass of the top quark and α s (taken at the 2σ level) the bound reads M H ≥ M min (equality corresponds to the asymptotic-safety prediction), where $ {{M}_{{\min }}}=\left( {129\pm 6} \right) $ GeV. We argue that the discovery of the SM Higgs boson in this range would be in agreement with the hypothesis of the absence of new energy scales between the Fermi and Planck scales, whereas the coincidence of M H with M min would suggest that the electroweak scale is determined by Planck physics. In order to clarify the relation between the Fermi and Planck scales a construction of an electron-positron or muon collider with a center-of-mass energy ~ (200 + 200 GeV) (Higgs and t-quark factory) would be needed.

567 citations

Book ChapterDOI
14 May 2009
TL;DR: This paper proposes stopping criteria, that is, thresholds computed at runtime to determine when enough replicates have been generated, and reports on the first large-scale experimental study to assess the effect of the number of replicates on the quality of support values, including the performance of the proposed criteria.
Abstract: Phylogenetic Bootstrapping (BS) is a standard technique for inferring confidence values on phylogenetic trees that is based on reconstructing many trees from minor variations of the input data, trees called replicates. BS is used with all phylogenetic reconstruction approaches, but we focus here on the most popular, Maximum Likelihood (ML). Because ML inference is so computationally demanding, it has proved too expensive to date to assess the impact of the number of replicates used in BS on the quality of the support values. For the same reason, a rather small number (typically 100) of BS replicates are computed in real-world studies. Stamatakis et al. recently introduced a BS algorithm that is 1---2 orders of magnitude faster than previous techniques, while yielding qualitatively comparable support values, making an experimental study possible. In this paper, we propose stopping criteria , that is, thresholds computed at runtime to determine when enough replicates have been generated, and report on the first large-scale experimental study to assess the effect of the number of replicates on the quality of support values, including the performance of our proposed criteria. We run our tests on 17 diverse real-world DNA, single-gene as well as multi-gene, datasets, that include between 125 and 2,554 sequences. We find that our stopping criteria typically stop computations after 100---500 replicates (although the most conservative criterion may continue for several thousand replicates) while producing support values that correlate at better than 99.5% with the reference values on the best ML trees. Significantly, we also find that the stopping criteria can recommend very different numbers of replicates for different datasets of comparable sizes. Our results are thus two-fold: (i) they give the first experimental assessment of the effect of the number of BS replicates on the quality of support values returned through bootstrapping; and (ii) they validate our proposals for stopping criteria. Practitioners will no longer have to enter a guess nor worry about the quality of support values; moreover, with most counts of replicates in the 100---500 range, robust BS under ML inference becomes computationally practical for most datasets. The complete test suite is available at http://lcbb.epfl.ch/BS.tar.bz2 and BS with our stopping criteria is included in RAxML 7.1.0.

567 citations

Journal ArticleDOI
TL;DR: In this article, an overview of dye-sensitized solar cells (DSC) with enhanced efficiencies and stabilities is presented, and an outlook summarizing future directions in the research and large-scale production of DSC is presented.
Abstract: This paper presents an overview of the research carried out by a European consortium with the aim to develop and test new and improved ways to realise dye-sensitized solar cells (DSC) with enhanced efficiencies and stabilities. Several new areas have been explored in the field of new concepts and materials, fabrication protocols for TiO2 and scatterlayers, metal oxide blocking layers, strategies for co-sensitization and low temperature processes of platinum deposition. Fundamental understanding of the working principles has been gained by means of electrical and optical modelling and advanced characterization techniques. Cost analyses have been made to demonstrate the potential of DSC as a low cost thin film PV technology. The combined efforts have led to maximum non-certified power conversion efficiencies under full sunlight of 11% for areas <02 cm2 and 101% for a cell with an active area of 13 cm2. Lifetime studies revealed negligible device degradation after 1000 hrs of accelerated tests under thermal stress at 80°C in the dark and visible light soaking at 60°C. An outlook summarizing future directions in the research and large-scale production of DSC is presented.

566 citations

Journal ArticleDOI
TL;DR: This work addresses the problem of security and protection of private user information within the SeVeCom project, having developed a security architecture that provides a comprehensive and practical solution that can be quickly adopted and deployed.
Abstract: Significant developments have taken place over the past few years in the area of vehicular communication systems. Now, it is well understood in the community that security and protection of private user information are a prerequisite for the deployment of the technology. This is so precisely because the benefits of VC systems, with the mission to enhance transportation safety and efficiency, are at stake. Without the integration of strong and practical security and privacy enhancing mechanisms, VC systems can be disrupted or disabled, even by relatively unsophisticated attackers. We address this problem within the SeVeCom project, having developed a security architecture that provides a comprehensive and practical solution. We present our results in a set of two articles in this issue. In this first one, we analyze threats and types of adversaries, identify security and privacy requirements, and present a spectrum of mechanisms to secure VC systems. We provide a solution that can be quickly adopted and deployed. In the second article we present our progress toward the implementation of our architecture and results on the performance of the secure VC system, along with a discussion of upcoming research challenges and our related current results.

566 citations

Journal ArticleDOI
TL;DR: In this article, a simple device was developed to isolate the microaggregates (53-250μm) contained within stable (i.e., resistant to slaking) macro aggregates obtained by conventional wet-sieving.
Abstract: Our 2000 paper Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture had its genesis in attempts to identify and isolate soil organic matter (SOM) fractions that reflect the impacts of climate, soil physiochemical properties and physical disturbance on the soil organic carbon balance. A key prerequisite for the investigation was the development of a simple device to isolate the microaggregates (53–250 μm) contained within stable (i.e., resistant to slaking) macroaggregates (>250 μm) obtained by conventional wet-sieving. By comparing the abundance and C content of micro-within-macroaggregates, the size distribution of intra-aggregate particulate organic matter (iPOM) and isotopically-based estimates of the age of the organic matter in the different fractions, we were able to corroborate our hypothesis that the absence of tillage (i.e., in no-till and native soils) promotes greater longevity of newly-formed macroaggregates, resulting in greater SOM stabilization in microaggregates formed within stable macroaggregates. Follow-up research has indicated that the microaggregate-within-macroaggregate fraction is 1) potentially a robust indicator for management-induced SOC changes over decadal time scales, 2) of biological origin and therefore useful in interpreting impacts of soil biota on soil C and N dynamics, but not in-situ CO 2 and N 2 O fluxes, 3) useful in complimentary chemical and spectroscopic approaches to relate SOM dynamics to soil structure and attributes of the soil pore space, and 4) a good candidate for being incorporated into models as a measurable fraction.

565 citations


Authors

Showing all 44420 results

NameH-indexPapersCitations
Michael Grätzel2481423303599
Ruedi Aebersold182879141881
Eliezer Masliah170982127818
Richard H. Friend1691182140032
G. A. Cowan1592353172594
Ian A. Wilson15897198221
Johan Auwerx15865395779
Menachem Elimelech15754795285
A. Artamonov1501858119791
Melody A. Swartz1481304103753
Henry J. Snaith146511123155
Kurt Wüthrich143739103253
Richard S. J. Frackowiak142309100726
Jean-Paul Kneib13880589287
Kevin J. Tracey13856182791
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

98% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

96% related

Georgia Institute of Technology
119K papers, 4.6M citations

96% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

96% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023234
2022704
20215,247
20205,644
20195,432
20185,094