scispace - formally typeset
Search or ask a question
Institution

École Polytechnique Fédérale de Lausanne

FacilityLausanne, Switzerland
About: École Polytechnique Fédérale de Lausanne is a facility organization based out in Lausanne, Switzerland. It is known for research contribution in the topics: Population & Catalysis. The organization has 44041 authors who have published 98296 publications receiving 4372092 citations. The organization is also known as: EPFL & ETHL.


Papers
More filters
Journal ArticleDOI
TL;DR: An essential requirement of Wnt/β-catenin signaling for the maintenance of the intestinal epithelium in the adult organism is demonstrated, challenging attempts to target aberrant Wnt signaling as a new therapeutic strategy to treat colorectal cancer.
Abstract: The Wnt signaling pathway is deregulated in over 90% of human colorectal cancers. β-Catenin, the central signal transducer of the Wnt pathway, can directly modulate gene expression by interacting with transcription factors of the TCF/LEF family. In the present study we investigate the role of Wnt signaling in the homeostasis of intestinal epithelium by using tissue-specific, inducible β-catenin gene ablation in adult mice. Block of Wnt/β-catenin signaling resulted in rapid loss of transient-amplifying cells and crypt structures. Importantly, intestinal stem cells were induced to terminally differentiate upon deletion of β-catenin, resulting in a complete block of intestinal homeostasis and fatal loss of intestinal function. Transcriptional profiling of mutant crypt mRNA isolated by laser capture microdissection confirmed those observations and allowed us to identify genes potentially responsible for the functional preservation of intestinal stem cells. Our data demonstrate an essential requirement of Wnt/β-catenin signaling for the maintenance of the intestinal epithelium in the adult organism. This challenges attempts to target aberrant Wnt signaling as a new therapeutic strategy to treat colorectal cancer.

538 citations

Journal ArticleDOI
TL;DR: An overview of this emerging field of molecular informatics, the basic concepts of prominent deep learning methods are presented, and motivation to explore these techniques for their usefulness in computer‐assisted drug discovery and design is offered.
Abstract: Artificial neural networks had their first heyday in molecular informatics and drug discovery approximately two decades ago. Currently, we are witnessing renewed interest in adapting advanced neural network architectures for pharmaceutical research by borrowing from the field of “deep learning”. Compared with some of the other life sciences, their application in drug discovery is still limited. Here, we provide an overview of this emerging field of molecular informatics, present the basic concepts of prominent deep learning methods and offer motivation to explore these techniques for their usefulness in computer-assisted drug discovery and design. We specifically emphasize deep neural networks, restricted Boltzmann machine networks and convolutional networks.

538 citations

Proceedings ArticleDOI
05 Sep 2012
TL;DR: StressSense is proposed for unobtrusively recognizing stress from human voice using smartphones and represents the first system to consider voice based stress detection and model adaptation in diverse real-life conversational situations using smartphones.
Abstract: Stress can have long term adverse effects on individuals' physical and mental well-being. Changes in the speech production process is one of many physiological changes that happen during stress. Microphones, embedded in mobile phones and carried ubiquitously by people, provide the opportunity to continuously and non-invasively monitor stress in real-life situations. We propose StressSense for unobtrusively recognizing stress from human voice using smartphones. We investigate methods for adapting a one-size-fits-all stress model to individual speakers and scenarios. We demonstrate that the StressSense classifier can robustly identify stress across multiple individuals in diverse acoustic environments: using model adaptation StressSense achieves 81% and 76% accuracy for indoor and outdoor environments, respectively. We show that StressSense can be implemented on commodity Android phones and run in real-time. To the best of our knowledge, StressSense represents the first system to consider voice based stress detection and model adaptation in diverse real-life conversational situations using smartphones.

538 citations

Journal ArticleDOI
TL;DR: It is found that charge recombination in the structures containing vertically aligned ZnO nanorods is remarkably slow, with a half-life of several milliseconds, over 2 orders of magnitude slower than that for randomly oriented Zn O nanoparticles.
Abstract: We report on the effect of nanoparticle morphology and interfacial modification on the performance of hybrid polymer/zinc oxide photovoltaic devices. We compare structures consisting of poly-3-hexylthiophene (P3HT) polymer in contact with three different types of ZnO layer: a flat ZnO backing layer alone; vertically aligned ZnO nanorods on a ZnO backing layer; and ZnO nanoparticles on a ZnO backing layer. We use scanning electron microscopy, steady state and transient absorption spectroscopies, and photovoltaic device measurements to study the morphology, charge separation, recombination behavior and device performance of the three types of structures. We find that charge recombination in the structures containing vertically aligned ZnO nanorods is remarkably slow, with a half-life of several milliseconds, over 2 orders of magnitude slower than that for randomly oriented ZnO nanoparticles. A photovoltaic device based on the nanorod structure that has been treated with an amphiphilic dye before deposition...

537 citations

Journal ArticleDOI
TL;DR: A review of the evidence for the transport of metals by vapor (which is defined as an aqueous fluid of any composition with a density lower than its critical density) can be found in this article.
Abstract: In most published hydrothermal ore deposit models, the main agent of metal transport is an aqueous liquid. However, there is increasing evidence from volcanic vapors, geothermal systems (continental and submarine), vapor-rich fluid inclusions, and experimental studies that the vapor phase may be an important and even dominant ore fluid in some hydrothermal systems. This paper reviews the evidence for the transport of metals by vapor (which we define as an aqueous fluid of any composition with a density lower than its critical density), clarifies some of the thermodynamic controls that may make such transport possible, and suggests a model for the formation of porphyry and epithermal deposits that involves precipitation of the ores from vapor or a vapor-derived fluid. Analyses of vapor (generally >90% water) released from volcanic fumaroles at temperatures from 500° to over 900°C and near-atmospheric pressure typically yield concentrations of ore metals in the parts per billion to parts per million range. These vapors also commonly deposit appreciable quantities of ore minerals as sublimates. Much higher metal concentrations (from ppm to wt %) are observed in vapor inclusions trapped at pressures of 200 to 1,000 bars in deeper veins at lower temperatures (400°–650°C). Moreover, concentrations of some metals, notably Cu and Au, are commonly higher in vapor inclusions than they are in inclusions of coexisting hypersaline liquid (brine). Experiments designed to determine the concentration of Cu, Sn, Ag, and Au in HCl-bearing water vapor at variable although relatively low pressures (up to 180 bars) partly explain this difference. These experiments show that metal solubility is orders of magnitude higher than predicted by volatility data for water-free systems, and furthermore that it increases sharply with increasing water fugacity and correlates positively with the fugacity of HCl. Thermodynamic analysis shows that metal solubility is greatly enhanced by reaction of the metal with HCl and by hydration, which results in the formation of species such as MeCl m . n H2O. Nonetheless, the concentrations measured by these experiments are considerably lower than those measured in experiments involving aqueous liquids or determined for vapor fluid inclusions. A possible explanation for this and for the apparent preference of metals such as Cu and Au for the vapor over the coexisting brine in some natural settings is suggested by limited experimental studies of metal partitioning between vapor and brine. These studies show that, whereas Cu, Fe, and Zn all partition strongly into the liquid in chloride-bearing sulfur-free systems, Cu partitions preferentially into the vapor in the presence of significant concentrations of sulfur. We therefore infer that high concentrations of Cu and Au in vapor inclusions reflect the strong preference of sulfur for the vapor phase and the formation of sulfur-bearing metallic gas species. Phase stability relationships in the system NaCl-H2O indicate how vapor transport of metals may occur in nature, by showing a range of possible vapor evolution paths for the conditions of porphyry-epithermal systems. At the world-class Bingham Canyon porphyry Cu-Au deposit, evidence from fluid inclusions supports a model in which a single-phase fluid of intermediate to vapor-like density ascends from a magma chamber. On cooling and decompression, this fluid condenses a small fraction of brine by intersecting the two-phase surface on the vapor side of the critical curve, without significantly changing the composition of the expanding vapor. Vapor and brine reach Cu-Fe sulfide saturation as both phases cool below 425°C. Vapor, which is the dominant fluid in terms of the total mass of H2O, Cu, and probably even Cl, is interpreted to be the main agent of metal transport. The evolution of fluids leading to high-grade epithermal gold mineralization is initiated by an H2S-, SO2-, Au-, and variably Cu- and As-rich vapor, which separates from an FeCl2-rich brine in a subjacent porphyry environment. In the early stages of the hydrothermal system, vapor expands rapidly and on reaching the epithermal environment, condenses, producing hypogene advanced argillic alteration and residual vuggy quartz and, in some cases, coeval high-sulfidation precious metal mineralization (e.g., Pascua). More commonly, the introduction of precious metals occurs somewhat later, after the site of magmatic fluid exsolution has receded to greater depth. Because of the relatively high pressure, the vapor separating from brine at this stage cools along a pressure-temperature path above the critical curve of the system, causing it to contract to a liquid capable of transporting several parts per million Au to temperatures as low as 150°C.

536 citations


Authors

Showing all 44420 results

NameH-indexPapersCitations
Michael Grätzel2481423303599
Ruedi Aebersold182879141881
Eliezer Masliah170982127818
Richard H. Friend1691182140032
G. A. Cowan1592353172594
Ian A. Wilson15897198221
Johan Auwerx15865395779
Menachem Elimelech15754795285
A. Artamonov1501858119791
Melody A. Swartz1481304103753
Henry J. Snaith146511123155
Kurt Wüthrich143739103253
Richard S. J. Frackowiak142309100726
Jean-Paul Kneib13880589287
Kevin J. Tracey13856182791
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

98% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

96% related

Georgia Institute of Technology
119K papers, 4.6M citations

96% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

96% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023234
2022704
20215,249
20205,644
20195,432
20185,094